Cluster Analysis

- Partitioning Clustering
- K-Means Clustering
- K-Medoid Clustering

Partitioning Clustering

- Partitioning method: Construct a partition of n documents into a set of K clusters
- Given: a set of documents and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
- k-means :Each cluster is represented by the center of the cluster
- k-medoids or PAM (Partition around medoids):

Each cluster is represented by one of the objects in the cluster

K-Means Algorithm

- The k-means algorithm partitions the given data into k clusters.
- Each cluster has a cluster center, called centroid.
- k is specified by the user
- Given k, the k-means algorithm consists of four steps:
- Select initial centroids at random.
- Assign each object to the cluster with the nearest centroid.
- Compute each centroid as the mean of the objects assigned to it.
- Repeat previous 2 steps until no change.

K-Means Algorithm

- Initilization: Determine the k cluster centers.

K-Means Algorithm

- Cluster Assignment: Assign each object to the cluster which has the closet distance from the centroid to the object.

K-Means Algorithm

- Update Cluster Centroid: Compute cluster centroid as the center of the points in the cluster.

K-Means Algorithm

- Update Cluster Centroid: Compute cluster centroid as the center of the points in the cluster.

K-Means Algorithm

- Example: Assume that there are 4 objects in the data set and each object has 2 features.

Object	Feature 1 (X)	Feature 2 (Y)
Medicine A	1	1
Medicine B	2	1
Medicine C	4	3
Medicine D	5	4

K-Means Algorithm

- Example: Assume that there are 4 objects in the data set and each object has 2 features.

K-Means Algorithm

- Centroid coordinates are $C 1=(1,1)$ and $C 2=(2,1)$.

K-Means Algorithm

K-Means Algorithm

- Centroid coordinates are $\mathrm{C} 1=(1,1)$ and $\mathrm{C} 2=$ (3.67,2.67).

Medicine $A(1,1)<\begin{aligned} & \mathrm{C}_{1} \sqrt{(1-1)^{2}+(1-1)^{2}}=0 \\ & \mathrm{C}_{2} \sqrt{(3.67-1)^{2}+(2.67-1)^{2}}=3.14\end{aligned}$
Medicine $\mathrm{B}(2,1)<\begin{array}{ll}\mathrm{C}_{1} \sqrt{(1-2)^{2}+(1-1)^{2}}=1 \\ \mathrm{C}_{2} \sqrt{(3.67-2)^{2}+(2.67-1)^{2}}=2.36\end{array}$
Medicine $\mathrm{C}(4,3)<\begin{aligned} & \mathrm{C}_{1} \sqrt{(1-4)^{2}+(1-3)^{2}}=3.6 \\ & \mathrm{C}_{2} \sqrt{(3.67-4)^{2}+(2.67-3)^{2}}=0.47\end{aligned}$
Medicine $D(5,4)<\begin{aligned} & C_{1} \sqrt{(1-5)^{2}+(1-4)^{2}}=5 \\ & C_{2} \sqrt{(3.67-5)^{2}+(2.67-4)^{2}}=1.89\end{aligned}$

K-Means Algorithm

$$
\begin{aligned}
& C_{1}=\left(\frac{1+2}{2}, \frac{1+1}{2}\right)=(1.5,1) \\
& C_{2}=\left(\frac{4+5}{2}, \frac{3+4}{2}\right)=(4.5,3.5)
\end{aligned}
$$

K-Means Algorithm

- Centroid coordinates are $\mathrm{C} 1=(1.5,1)$ and $\mathrm{C} 2=$ (4.5,3.5).

Medicine $A(1,1)<\begin{aligned} & \mathrm{C}_{1} \sqrt{(1.5-1)^{2}+(1-1)^{2}}=0.5 \\ & \mathrm{C}_{2} \sqrt{(4.5-1)^{2}+(3.5-1)^{2}}=4.3\end{aligned}$
Medicine B $(2,1)<\begin{aligned} & \mathrm{C}_{1} \sqrt{(1.5-2)^{2}+(1-1)^{2}}=0.5 \\ & \mathrm{C}_{2} \sqrt{(4.5-2)^{2}+(3.5-1)^{2}}=3.54\end{aligned}$
Medicine $\mathrm{C}(4,3)<\begin{aligned} & \mathrm{C}_{1} \sqrt{(1.5-4)^{2}+(1-3)^{2}}=3.20 \\ & \mathrm{C}_{2} \sqrt{(4.5-4)^{2}+(3.5-3)^{2}}=0.71\end{aligned}$
Medicine $\mathrm{D}(5,4)<\begin{aligned} & \mathrm{C}_{1} \sqrt{(1.5-5)^{2}+(1-4)^{2}}=4.61 \\ & \mathrm{C}_{2} \sqrt{(4.5-5)^{2}+(3.5-4)^{2}}=0.71\end{aligned}$

K-Medoid Algorithm

Difference between K-means and K-medoids:

- K-means: Cluster centers may not be the original data point.
- K-medoids: Each cluster's centroid is represented by a point called medoid in the cluster.

K-Medoid

a K-Medoid Algorithm

- Arbitrarily choose k objects as the initial medoids.
- Associate each data point to the closest medoid.
- While the cost of the configuration decreases:
- For each medoid m, for each non-medoid data point o :
- Swap m and o, recompute the cost (sum of distances of points to their medoid)
- If the total cost of the configuration increased in the previous step, undo the swap

- K-Medoid Algorithm

- Example: Assume that there are 10 objects in the data set and each object has 2 features.

X_{1}	2	6
X_{2}	3	4
X_{3}	3	8
X_{4}	4	7
X_{5}	6	2
X_{6}	6	4
X_{7}	7	3
X_{8}	7	4
X_{9}	8	5
X_{10}	7	6

K-Medoid Algorithm

- Example: Assume that there are 10 objects in the data set and each object has 2 features.

K-Medoid Algorithm

Data object		Distance to	
	X_{i}	$c_{1}=(\mathbf{3 , 4})$	$c_{2}=(\mathbf{7 , 4)}$
1	$(2,6)$	$\mathbf{3}$	$\mathbf{7}$
2	$(3,4)$	$\mathbf{0}$	4
3	$(3,8)$	$\mathbf{4}$	8
4	$(4,7)$	$\mathbf{4}$	6
5	$(6,2)$	5	$\mathbf{3}$
6	$(6,4)$	3	$\mathbf{1}$
7	$(7,3)$	5	$\mathbf{1}$
8	$(7,4)$	4	$\mathbf{0}$
9	$(8,5)$	6	$\mathbf{2}$
10	$(7,6)$	6	$\mathbf{2}$
Cost	$\mathbf{1 1}$	$\mathbf{9}$	

- Cluster $_{1}$:
$\{(3,4)(2,6)(3,8)(4,7)\}$
- Cluster $_{2}$:
$\{(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)\}$

K-Medoid Algorithm

- The total cost of this clustering is the sum of the distance between a data point and its cluster center:

$$
3+0+4+4+3+1+1+0+2+2=20
$$

Cluster $1 \quad$ Cluster 2

K-Medoid Algorithm

- Select one of the nonmedoids O^{\prime}
- Let us assume $O^{\prime}=(7,3)$.
- So now the medoids are $\mathrm{C}_{1}(3,4)$ and $\mathrm{O}^{\prime}(7,3)$
- If c1 and O^{\prime} are new medoids, calculate the total cost involved

