Discrete Mathematical Structure Final Exam (Spring 2013)

No : Name:

GRAPHS

1. (15*P*) Use Dijkstra's algorithm to find the length of a shortest path and a shortest path from **a** to **z** in the following weighted graph (show each iteration in below box).

а	b	С	d	е	f	g	h	i	j	Ζ
0	-	-	-	-	-	-	-	-	-	-
0	4	-	-	7	5	-	-	-	2	-
0	4	7	10	7	5	11	1	8	2	-
0	4	7	9	7	5	11	13	8	2	-
0	4	7	9	7	5	11	13	8	2	12
The	e len	gth	of th	ie sh	orte	est p	ath i	s 12	•	

2. (10*P*) For the following graph, determine if it has an Euler path that is not a circuit.

It has an Euler trail that is not a circuit because it has two vertices with odd degree (b and e).

TREES

3. (15*P*) Construct an optimal Huffman code for the set of letters in the table. Find the average length of bit strings encoding 39-letter words with the Huffman code.

- 4. In the following graph with its vertices in alphabetical order find a spanning tree using
 - i. (10*P*) Breadth-first search.
 - ii. (10*P*) Depth-first search.

AUTOMATA

- 1. According to finite state automaton transition diagram given on the right,
 - i. (10*P*) Design the grammar rules.
 - ii. (10*P*) Describe acceptable strings as a sentence.

i. $A \rightarrow aB \mid bC \mid B \rightarrow bF \mid C \rightarrow aF$ $F \rightarrow aB \mid bC \mid \lambda$ Then by removing λ , $A \rightarrow aB \mid bC \mid B \rightarrow bF \mid b$ $C \rightarrow aF \mid a \quad F \rightarrow aB \mid bC$

The strings which start and finish with the different symbols, where the same letters cannot be consecutive, are accepted.

Α

F

b

2. Let G be the grammar of a language with non terminal symbols {E,F}, terminal symbol {a,b,+, *}, starting symbol *E*, and rules as follow.

ii.

$$E \to F \qquad E \to +FE$$
$$E \to *FE \qquad F \to a$$
$$F \to b$$

- i. (10*P*) Find a derivation for the string " * + a * bba".
- ii. (10*P*) Draw its deterministic finite state automaton transition diagram by using nondeterministic one.

