Discrete Mathematics Midterm Exam (Spring 2015)

No :
Name:

1. LOGIC (20P) Prove the following logical inference problem by using natural deduction for propositional logic.

$\begin{aligned} & p \rightarrow q \\ & q \rightarrow p \end{aligned}$	(1) $p \rightarrow q$ Premise		
$\neg r$	(2)	$q \rightarrow r$$p \rightarrow r$	Premise
$q \rightarrow r$			(1), (2), Hypothetical Syllogism
$\therefore \quad \neg q$	(4)	$\neg r$	Premise
	(5)	$\neg p$	(3), (4), Modus Tollens
	(6)	$q \rightarrow p$	Premise
	(7)	$\neg q$	(5), (6), Modus Tollens

2. RELATION (20P) Design a Hasse diagram so that is corresponds to this set:

$$
S=\{(a, b) \mid a \in N, b \in N, 2 \leq a \leq 50 \leq b \leq 80, b \% a=0\}
$$

When we check 3 rules (1. Reflexive, 2. Antisymmetric, 3. Transitive) for the set. For each element " a " of S, there must be a (a, a) pair. But there is only one element $(50,50)$ for reflexive property. But because of $(50,50), S$ has both transitive and antisymmetric properties. Thus we cannot draw a Hasse diagram. We can only draw Hasse diagram for a subset $\{(50,50)\}$ of S. Hasse diagram of that subset must have only one point without any line.

- 50

3. COMPLEXITY (20P) For the worst case time, find the complexity of the pseudo code given below.
```
procedure f(n)
    n=n-(n % 2)
    if }\textrm{n}\leq1\mathrm{ then
        return 1
    else
        return (3*f(n)-5)
end if
```

Since in recursion step, n value of recursive function $f(n)$ does not be decreased, procedure run forever. Therefore the complexity of the procedure is ∞.
4. INDUCTION $(20 P)$ Using mathematical induction, prove that for $\forall n \geq 0$.

$$
(n+1) \cdot 2^{n+1}=\sum_{k=0}^{n}(k+2) 2^{k}
$$

1. for $n=0$, the equation will be $2=2$ (true)

2 . instead of n, if we write $n+1$, the equation will be true because of

$$
\begin{aligned}
& (n+2) \cdot 2^{n+2}=\sum_{k=0}^{n+1}(k+2) 2^{k} \\
& (n+2) \cdot 2^{n+2}=(n+3) 2^{n+1}+\sum_{k=0}^{n}(k+2) 2^{k} \\
& (n+2) \cdot 2^{n+2}=(n+3) 2^{n+1}+\left[(n+1) \cdot 2^{n+1}\right] \\
& 2(n+2)=(n+3)+(n+1) \\
& 2 n+4=2 n+4
\end{aligned}
$$

5. COMBINATORICS (20P) Let be seven coins in a purse (or a wallet). How many possible combinations of these coins can be formed? (1KRŞ, $5 \mathrm{KRS}, 10 \mathrm{KRS}, 25 \mathrm{KRS}, 50 \mathrm{KRS}, 1 \mathrm{TL}$)

We should write first equation:
$x_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}=7$
Here each x value represent one of coin types (1,5,10, 25, 50, and 100).
Now we can consider this equation as a generalized permutation question:

$$
\binom{7+6-1}{7}=\binom{12}{7}=\frac{12!}{7!5!}=792
$$

