No:
Name:

1. LOGIC (20P) Consider these statements:
$P(x)$: " x is a hummingbird"
$R(x)$: " x is large"
$S(x)$: "x lives on honey"
$\mathrm{Q}(\mathrm{x})$: " x is richly colored"
Express the statements below using quantifiers and $P(x), Q(x), R(x), S(x)$.
a. (5P) "All hummingbirds are richly colored."

$$
\forall x(P(x) \rightarrow Q(x))
$$

b. (5P) "No large birds live on honey."

$$
\neg \exists x(R(x) \wedge S(x))
$$

c. (5P) "Birds that do not live on honey are dull in color."

$$
\forall x(\neg S(x) \rightarrow \neg Q(x))
$$

d. (5P) "Hummingbirds are small."

$$
\forall x(P(x) \rightarrow \neg R(x))
$$

2. RELATION (20P) By checking whether the set S given below is a partial order set, draw its Hasse diagram.

$$
\begin{aligned}
S= & \{(a, a),(a, b),(a, c),(a, d),(a, e),(a, f),(a, g),(b, b),(b, d),(b, e),(b, f),(b, g), \\
& (c, c),(c, e),(c, f),(c, g),(d, d),(d, f),(e, e),(e, f),(e, g),(f, f),(g, g)\}
\end{aligned}
$$

At first, we should check the three rules:

1. Reflexive: All elements are related itself, so it is OK.

$$
(a, a),(b, b),(c, c),(d, d)(e, e),(f, f),(g, g)
$$

2. Anti-symmetric: In the set S, found relations in case both (x, y) and (y, x) are only the same ones in previous rule. For this reason, it is OK.
3. Transitive: We can find all transitive situations
$(\mathrm{a}, \mathrm{b})-(\mathrm{b}, \mathrm{e}) \rightarrow(\mathrm{a}, \mathrm{e})$
$(b, d)-(d, f) \rightarrow(b, f)$
$(c, e)-(e, g) \rightarrow(c, g)$

$(\mathrm{a}, \mathrm{d})-(\mathrm{d}, \mathrm{f}) \rightarrow(\mathrm{a}, \mathrm{f})$
4. COMPLEXITY (20P) Find the complexity of the algorithm below for the worst case.
```
function xR(n)
    z = 0;
    for i=1 to n
        z = z + i;
    end for
    if n==1
        return 1;
    else
        return z+xR(round(n/2));
    end if
end function
```

The worst case is represented by big 0 .

$$
\begin{aligned}
\mathrm{O}(\mathrm{~T}) & =\mathrm{O}\left(n+\frac{n}{2}+\frac{n}{4}+\cdots+\frac{n}{n}\right) \\
& =0\left(n\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{n}\right)\right) \\
& =0\left(n\left(\frac{1-\left(\frac{1}{2}\right)^{1+\log _{2} n}}{1-\frac{1}{2}}\right)\right) \\
& =0\left(n\left(2-2^{-\log _{2} n}\right)\right)=0(2 \mathrm{n}-1) \\
& =\mathbf{O}(\boldsymbol{n})
\end{aligned}
$$

4. RECURSIVE RELATION (20P) Write the mathematical expression of the algorithm "xF" down independent of the term of previous value.
```
function xF(n)
    if n==1
        return 1;
    else
        return 3 * xF(n-1) + 1;
    end if
end function
    an}=3\mp@subsup{a}{n-1}{}+1=3(3\mp@subsup{a}{n-2}{}+1)+1=\mp@subsup{3}{}{n-1}\mp@subsup{a}{1}{}+(1+3+\mp@subsup{3}{}{2}+\cdots+\mp@subsup{3}{}{n-2}
    =3}\mp@subsup{3}{}{n-1}\mp@subsup{a}{1}{}+\frac{1-\mp@subsup{3}{}{n-1}}{1-3}=\frac{(2\mp@subsup{a}{1}{}+1)*\mp@subsup{3}{}{n-1}-1}{2
xF(n)={}\begin{array}{cl}{1}&{,n=1}\\{\frac{\mp@subsup{3}{}{n}-1}{2}}&{,\mathrm{ other }}
```

5. BAYES (20P) At a city, 4% of men and 1% of women are over 190 cm tall. The total student population is divided in the ratio $\mathrm{m}: 2 / \mathrm{w}: 3$. If a student is selected at random from among all those over 190 cm tall, by computing probabilities, comment the probable gender of that student.

$$
\begin{aligned}
P(T \mid W) & =0.01 \\
P(T \mid M) & =0.04 \\
P(M) & =0.4 \\
P(W) & =0.6 \\
P(T) & =0.4 * 0.04+0.6 * 0.01=0.022 \\
P(W \mid T) & =\frac{P(T \mid W) P(W)}{P(T)}=\frac{0.01 * 0.6}{0.022}=\frac{3}{11} \\
P(M \mid T) & =\frac{P(T \mid M) P(M)}{P(T)}=\frac{0.04 * 0.4}{0.022}=\frac{8}{11}
\end{aligned}
$$

Because of $P(M \mid T)>P(W \mid T)$, one selected at random in tall students is probable a man.

NOTE: In any question, you can use this: $\left(1+r+r^{2}+r^{3}+\ldots+r^{n}\right)=\left(1-r^{n+1}\right) /(1-r)$

