No:
Name:

1. GRAPH (30P) G is a simple planar graph where it can be colored just with 4 colors and all vertices have 3 neighbors. Draw this G graph and explain your answer.

K_{4} is a complete graph which can be colored with just (only) four colors. It is not only a simple (no parallel edge) planar (no edge intersection) graph, also its each vertex has 3 neighbors.
2. TREE (30P) Let be $\mathrm{A}=(\mathrm{a}-\mathrm{b})^{\wedge}\left(\mathrm{c}^{*} \mathrm{~d}\right)+(\mathrm{e}+\mathrm{f} / \mathrm{g})$. By drawing A's parse tree, write its Polish (prefix) notation.

3. AUTOMATA (30P) Let L be a regular language on $\{a, b\}^{*}$. It accepts the words with even length where the last letter is " a ". Draw deterministic finite state automaton transition diagram of L.

1: Initial state (there is no letter yet)
2: Odd-length words
3: Even-length words which finishes with " a "
4: Even-length words which finishes with " b "

OR

4. BAYES (10P) In Turkey, the incidence of diabetes is 33%. A new method which is called Diabetic Retinopathy is used to diagnose diabetes by scanning eyes of patients only. But its wrong prediction ratio in really diabetic patients is 20% and it can detect 90% of healthy people correctly. When a new patient candidate take a positive (diabetes) from this test, how can we comment his/her situation according to Bayes theorem?
D : Diabetes disease
$P(D)=0.33 \quad P(\sim D)=0.67$
$P(-\mid D)=0.20 \quad P(+\mid D)=1-0.20=0.80$
$P(-\mid \sim D)=0.90 \quad P(+\mid \sim D)=1-0.90=0.10$
$P(+)=P(+\mid D) P(D)+P(+\mid \sim D) P(\sim D)=0.80 * 0.33+0.10 * 0.67=0.264+0.067=0.331$
$P(D \mid+)=\frac{P(+\mid D) P(D)}{\mathrm{P}(+)}=\frac{0.80 * 0.33}{0.331} \cong 0.80$
$P(\sim D \mid+)=1-P(D \mid+) \cong 0.20$

Since $P(D \mid+)>P(\sim D \mid+)$, he/she is probably a diabetes patient.

