
1

Umut ORHAN, PhD.
1

Machine Learning
13. week

 Deep Learning

 Convolutional Neural Network

 Recurrent Neural Network

Umut ORHAN, PhD.

Why Deep Learning is so
Popular ?

2

1. Increase in the amount
of data

Thanks to the Internet, huge
amount of data have been
produced and stored
digitally. Deep Learning
systems gain advantage by
using this big data.

2

Umut ORHAN, PhD.

Why Deep Learning is so
Popular ?

3

2. Increase in GPU and processing power

Graphics processors are specialized equipment for parallel
computing. In this way, the CPU can do some operations
that are slow, much faster. Deep Learning researchers are
benefitting from this increase in processing power and
cheapness.

Umut ORHAN, PhD.

Why Deep Learning is so
Popular ?

4

3. Depth increase

As a result of increase in processing power, deeper models
are being used in practice. Deep learning models are multi
layered structures.Let’s look at vision system in human brain,

 The signals from the eyes through the nerves are evaluated in a
hierarchical structure with several layers.

 More basic features such as edges, corners are recognized in the
center where the signal is first visited after the eye.

 In later layers these edges and corners can be brought together to
recognize features such as nose, mouth shapes, faces in subsequent
layers and in the later layers, the appearance of the person and
objects in the scene.

deep learning systems work on this principle.

3

Umut ORHAN, PhD.

Deep Learning Aprroaches

5

In this lesson, we will focus on two approaches:

1. Convolutional Deep Neural Networks

2. Recurrent Deep Neural Networks

Umut ORHAN, PhD.

Convolutional Neural Network

 Convolutional neural network (CNN)
is a class of deep, feed-forward artificial
neural network.

 CNNs use a variation of multilayer
perceptrons designed to require minimal
preprocessing.

4

Umut ORHAN, PhD.

Convolutional Neural Network

 They have applications in

 image and video recognition,

 recommender systems,

 natural language processing.

Umut ORHAN, PhD.

Why CNN’s ? Over Ordinary
neural networks ?

 Let’s say we are training a classifier to identify a
cat using an ordinary neural net (where we have
input, hidden and output layers)

5

Umut ORHAN, PhD.

Why CNN’s ? Over Ordinary
neural networks ?

Umut ORHAN, PhD.

Why CNN’s ? Over Ordinary
neural networks ?

 An ordinary neural networks typically takes
features as inputs, for this problem we take
image array as inputs, so we have a vector, size
of (image width*height) as an input.

 We feed it to the model and train it (back
propagation) for many images for many
iterations.

6

Umut ORHAN, PhD.

Why CNN’s ? Over Ordinary
neural networks ?

 Once the network is trained then we can give
another cat picture to predict (to get the score)
to see if it gives the result as cat(high
probability score).

 well, it works, but wait..

Umut ORHAN, PhD.

Why CNN’s ? Over Ordinary
neural networks ?

The ordinary network may not predict well

What if I gave the test pictures like these for prediction.

7

Umut ORHAN, PhD.

Why CNN’s ? Over Ordinary
neural networks ?

 CNNs are used mainly to look for patterns in an image,
we don’t need to give features, the CNN understands the
right features by itself as it goes deep. This is one of the
reasons why we need CNN’s. Period.

 And another reason is, ordinary neural networks don’t
scale well for full sized images , let’s say that input
images size =100(width) * 100 (height) * 3 (rgb).Then
we need to have 30,000 neurons which is very expensive
in the network.

 Hence we need to learn CNN.

Umut ORHAN, PhD.

How does CNN work?

 For every image , it creates many images by
applying some filters (just like photo editing
tools)

 These filters, we can call weights , kernels or
features.

 They are initialized randomly first then during the
training these weights will get updated (the
network learns these weights)

8

Umut ORHAN, PhD.

Design of CNN

 A CNN consists of an input and an output layer,
as well as multiple hidden layers.

 The hidden layers of a CNN typically consist of

1. Convolutional Step,

2. Non-Linearity Step

3. Pooling Step

4. Fully Connected Layers

Umut ORHAN, PhD.

Design of CNN

9

Umut ORHAN, PhD.

Convolution Step

 The primary purpose of Convolution in case of a
CNN is to extract features from the input image.

 Convolution preserves the spatial relationship
between pixels by learning image features using
small squares of input data.

Umut ORHAN, PhD.

Convolution Step

Image Filter

10

Umut ORHAN, PhD.

Convolution Step

Umut ORHAN, PhD.

Convolution Step

 We slide the orange matrix over our original
image (green) by 1 pixel (also called ‘stride’) and
for every position,

 We compute element wise multiplication
(between the two matrices)

 Add the multiplication outputs to get the final
integer which forms a single element of the
output matrix (pink).

 Note that the 3×3 matrix “sees” only a part of
the input image in each stride.

11

Umut ORHAN, PhD.

Convolution Step

 In CNN terminology, the 3×3 matrix is called a
‘filter‘ or ‘kernel’ or ‘feature detector’ and the
matrix formed by sliding the filter over the image
and computing the dot product is called the
‘Convolved Feature’ or ‘Activation Map’ or
the ‘Feature Map‘.

 Note that filters acts as feature detectors from
the original input image.

Umut ORHAN, PhD.

Convolution Step

 In practice, a CNN learns the values of these
filters on its own during the training process
(although we still need to specify parameters
such as number of filters, filter size, architecture
of the network etc. before the training process).

 The more number of filters we have, the more
image features get extracted and the better our
network becomes at recognizing patterns in
unseen images.

12

Umut ORHAN, PhD.

Convolution Step

Umut ORHAN, PhD.

Convolution Step

 The size of the Feature Map (Convolved Feature)
is controlled by three parameters that we need
to decide before the convolution step is
performed:

 Depth

 Stride

 Zero-padding

13

Umut ORHAN, PhD.

Convolution Step

Depth
Depth corresponds to the number of filters we use for
the convolution operation.

Stride
Stride is the number of pixels by which we slide our
filter matrix over the input matrix. When the stride is 1
then we move the filters one pixel at a time. When the
stride is 2, then the filters jump 2 pixels at a time as we
slide them around. Having a larger stride will produce
smaller feature maps.

Umut ORHAN, PhD.

Convolution Step

Zero-Padding

Sometimes, it is convenient to pad the input matrix
with zeros around the border, so that we can apply
the filter to bordering elements of our input image
matrix. A nice feature of zero padding is that it
allows us to control the size of the feature maps.
Adding zero-padding is also called wide convolution,
and not using zero-padding would be a narrow
convolution.

14

Umut ORHAN, PhD.

 An additional operation called ReLU has been
used after every Convolution operation.

 ReLU stands for Rectified Linear Unit and is a

non-linear operation.

Non-Linearity Step

Umut ORHAN, PhD.

Non-Linearity Step

 non linear functions such as

 tanh ,

 sigmoid,

 ReLU(rectified linear unit)

 But ReLU has been found to perform better
in most situations.

15

Umut ORHAN, PhD.

 ReLU is an element wise operation (applied per
pixel) and replaces all negative pixel values in the
feature map by zero.

 The purpose of ReLU is to introduce non-linearity in
our ConvNet, since most of the real-world data we
would want our ConvNet to learn would be non-
linear (Convolution is a linear operation – element
wise matrix multiplication and addition, so we
account for non-linearity by introducing a non-linear
function like ReLU).

Non-Linearity Step

Umut ORHAN, PhD.

 It shows the ReLU operation applied to one of
the feature maps obtained

Non-Linearity Step

16

Umut ORHAN, PhD.

The Pooling Step

 Spatial Pooling (also called subsampling or
downsampling) reduces the dimensionality of each
feature map but retains the most
important information.

 Spatial Pooling can be of different types: Max,
Average, Sum etc.

Umut ORHAN, PhD.

The Pooling Step

 In case of Max Pooling, we define a spatial
neighborhood (for example, a 2×2 window) and
take the largest element from the rectified
feature map within that window.

 Instead of taking the largest element we could
also take the average (Average Pooling) or
sum of all elements in that window.

 In practice, Max Pooling has been shown to
work better.

17

Umut ORHAN, PhD.

The Pooling Step

 An example of Max Pooling operation on a Rectified
Feature map (obtained after convolution + ReLU
operation) by using a 2×2 window.

Umut ORHAN, PhD.

The Pooling Step

Pooling operation is applied separately to each feature
map (notice that, due to this, we get three output maps
from three input maps).

18

Umut ORHAN, PhD.

The Pooling Step

Max and Sum Pooling

Umut ORHAN, PhD.

Fully Connected Layer

 The Fully Connected layer is a traditional Multi-
Layer Perceptron that uses a softmax activation
function in the output layer.

 The term “Fully Connected” implies that every
neuron in the previous layer is connected to
every neuron on the next layer.

19

Umut ORHAN, PhD.

Fully Connected Layer

 The output from the convolutional and pooling
layers represent high-level features of the input
image.

 The purpose of the Fully Connected layer is to
use these features for classifying the input image
into various classes based on the training
dataset.

Umut ORHAN, PhD.

Fully Connected Layer

• The sum of output probabilities from the Fully
Connected Layer is 1. This is ensured by using the
Softmax as the activation function in the output layer of
the Fully Connected Layer. The Softmax function takes a
vector of arbitrary real-valued scores and squashes it to
a vector of values between zero and one that sum to
one.

20

Umut ORHAN, PhD.

Fully Connected Layer

 Apart from classification, adding a fully-
connected layer is also a (usually) cheap way of
learning non-linear combinations of these
features. Most of the features from convolutional
and pooling layers may be good for the
classification task, but combinations of those
features might be even better.

Umut ORHAN, PhD.

Introduction to RNN

• Recurrent Neural Network (RNN) was
introduced at first in 1986.

• Traditional feed forward network assume
that all inputs and outputs are independent
of each other.

• The internal state maintains a memory
about history of all past inputs.

21

Umut ORHAN, PhD.

• The network contains at least one feed-back
connection, so the activations can flow round in a
loop.

• That enables the networks to do temporal
processing and learn sequences.

• Recurrent neural networks (RNNs) are often used for
handling sequential data.

Example: if you want to predict the next word
in a sentence you need to know which words came
before it

Introduction to RNN

Umut ORHAN, PhD.

Feed forward networks
• Information only flows one way
• One input pattern produces (same) one output
• No memory of previous state

Recurrent Neural Networks
• Nodes connect back to other nodes and/or themselves
• Information flow is multidirectional
• Memory of previous state(s)
• RNNs are more “biologically realistic” because of the

recurrent connectivity found in the visual cortex of the
brain

Introduction to RNN

22

Umut ORHAN, PhD.

RNN Architecture

• In the diagram, a chunk of neural network, s, looks
at some input 𝑥𝑡 and outputs a value 𝑜𝑡. A loop
allows information to be passed from one step of the
network to the next.

Umut ORHAN, PhD.

RNN Architecture

23

Umut ORHAN, PhD.

RNN Architecture

• 𝑥𝑡 = input at time step t.

• 𝑠𝑡 = hidden state at time step t. Calculated based on the
previous hidden state and the input at the current step:

𝑠𝑡 = f(U 𝑥𝑡 + W 𝑠𝑡−1).

• f = activation function (tanh, ReLU, etc).

• 𝑠−1, required to calculate first hidden state, typically
initialized to all zeroes.

• 𝑜𝑡 = output at step t.

𝑜𝑡 = 𝑊ℎ𝑦 ∗ 𝑠𝑡

Umut ORHAN, PhD.

RNN Architecture

24

Umut ORHAN, PhD.

RNN Architecture

 This is in fact a type of
recurrent neural network —
 a one to one recurrent net,
because it maps one input to
one output. A one to one
recurrent net is equivalent to
an artificial neural net.

Umut ORHAN, PhD.

 One input is mapped to
multiple outputs. An example
of this would be image
captioning — the input would
be the image in some
processed form and the output
would be a sequence of words.

RNN Architecture

25

Umut ORHAN, PhD.

 The input is in the form of
a sequence, and so the
hidden states are
functionally dependent
on both the input at that
time step and the
previous hidden state.

RNN Architecture

Umut ORHAN, PhD.

 The final type of recurrent net
is many to many, where both
the input and output are
sequential.

 A use case would be machine
translation where a sequence
of words in one language
needs to be translated to a
sequence of words in
another.

RNN Architecture

26

Umut ORHAN, PhD.

• Another type of many to many
architecture exists where each
neuron has a state at every time
step, in a “synchronized” fashion.
Here, each output is only
dependent on the inputs that were
fed in during or before it. Because
of this, synchronized many to
many probably wouldn’t be
suitable for translation.

RNN Architecture

Umut ORHAN, PhD.

RNN Variants

RNNs come in many variants:

• Simple Recurrent Networks

• Long Short Term Memory (LSTM)

• Convolutional Recurrent Neural Networks

27

Umut ORHAN, PhD.

Simple RNN: Elman Network

• It first used by Jeff Elman (1990).

• The SRN is a specific type of back-propagation
network.

• It assumes a feed-forward architecture, with units
in input, hidden, and output pools.

• It also allows for a special type of hidden layer
called a “context” layer.

Umut ORHAN, PhD.

• Copy inputs for time t to the
input units.

• Compute hidden unit
activations using net input
from input units and from
copy layer.

• Compute output unit
activations as usual.

• Copy new hidden unit
activations to copy layer.

Simple RNN: Elman Network

28

Umut ORHAN, PhD.

Backpropagation Through
Time

• The Backpropagation Through Time (BPTT) learning
algorithm is a natural extension of standard
backpropagation that performs gradient descent on
a complete unfolded network.

• The more context (copy layers) we maintain, the
more history explicitly include in our gradient
computation.

• The downside of BPTT is that it requires a large
amount of resources
 Storage – entire history needs to be stored
 Computation – Gradient calculations for all layers

Umut ORHAN, PhD.

Long Short Term Memory

• Introduced by Hochreiter & Schmidhuber
(1997).

• Long-Short Term Memory (LSTM) maintain a
more constant error flow in the backpropogation
process.

• LSTM can learn over more than 1000 time steps
, and thus can handle large sequences that are
linked remotely.

29

Umut ORHAN, PhD.

Long Short Term Memory

• LSTM networks introduce a new structure called
a memory cell

• Each memory cell contains three gates:
 Input gate

 Forget gate

 Output gate

Umut ORHAN, PhD.

Long Short Term Memory

• Forget Gate

𝑓 = 𝜎 𝑥𝑡𝑈
𝑓 + 𝑠𝑡−1𝑊

𝑓

• Input Gate

𝑖 = 𝜎 𝑥𝑡𝑈
𝑖 + 𝑠𝑡−1𝑊

𝑖

• Output Gate
𝑜 = 𝜎 𝑥𝑡𝑈

𝑜 + 𝑠𝑡−1𝑊
𝑜

30

Umut ORHAN, PhD.

Long Short Term Memory

Umut ORHAN, PhD.

Convolutional RNN

• Convolutional neural networks (CNN) are
able to extract higher level features that are
invariant to local spectral and temporal
variations.

• Recurrent neural networks (RNNs) are
powerful in learning the longer term
temporal context.

• It can be described as a modified CNN by
replacing the last convolutional layers with a
RNN.

31

Umut ORHAN, PhD.

Convolutional RNN

• The key module of this RCNN are the
recurrent convolution layers (RCL).

• The network can evolve over time though
the input is static and each unit is
influenced by its neighboring units.

Umut ORHAN, PhD.

RNN Example

• The neural network has the vocabulary: h, e, l ,
o.

• That is, it only knows these four characters;
exactly enough to produce the word “hello”.

• We will input the first character, “h”, and from
there expect the output at the following time
steps to be: “e”, “l”, “l”, and “o” respectively, to
form: hello

32

Umut ORHAN, PhD.

RNN Example

• We can represent input and output via one hot
encoding, where each character is a vector with a
1 at the corresponding character position and
otherwise all 0s.

• For example, since our vocabulary is [h, e, l, o],
we can represent characters using a vector with
four values, where a 1 in the first, second, third,
and fourth position would represent “h”, “e”, “l”,
and “o” respectively.

Umut ORHAN, PhD.

RNN Example

33

Umut ORHAN, PhD.

RNN Example

 As you can see, we input the first letter and the
word is completed.

Umut ORHAN, PhD.

RNN Example

 One interesting technique would be to sample
the output at each time step and feed it into the
next as input:

34

Umut ORHAN, PhD.

RNN Example

• Each hidden state would contain a similar sort of vector,
though not necessarily something we could interpret like
we can for the output.

• The RNN is saying: given “h”, “e” is most likely to be the
next character. Given “he”, “l” is the next likely character.
With “hel”, “l” should be next, and with “hell”, the final
character should be “o”.

• But, if the neural network wasn’t trained on the word
“hello”, and thus didn’t have optimal weights (ie. just
randomly initialized weights), then we’d have garble like
“hleol” coming out.

Umut ORHAN, PhD.

CNN vs. RNN

• RNN can handle arbitrary
input/output lengths.

• RNN unlike feed forward
neural networks - can use
their internal memory to
process arbitrary
sequences of inputs.

• RNNs are ideal for text
and speech analysis.

• RNN will learn to
recognize patterns across
time.

• CNN takes a fixed size
inputs and generates
fixed-size outputs.

• CNN is a type of feed-
forward artificial neural
network.

• CNNs are ideal for images
and video processing.

• CNN will learn to
recognize patterns across
space.

