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Machine Learning
13. week

 Deep Learning

 Convolutional Neural Network

 Recurrent Neural Network
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Why Deep Learning is so 
Popular ?
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1. Increase in the amount 
of data

Thanks to the Internet, huge 
amount of data have been 
produced and stored 
digitally. Deep Learning 
systems gain advantage by 
using this big data.
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2. Increase in GPU and processing power

Graphics processors are specialized equipment for parallel 
computing. In this way, the CPU can do some operations 
that are slow, much faster. Deep Learning researchers are 
benefitting from this increase in processing power and 
cheapness.
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Why Deep Learning is so
Popular ?
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3. Depth increase

As a result of increase in processing power, deeper models 
are being used in practice. Deep learning models are multi 
layered structures.Let’s look at vision system in human brain, 

 The signals from the eyes through the nerves are evaluated in a 
hierarchical structure with several layers.

 More basic features such as edges, corners are recognized in the 
center where the signal is first visited after the eye.

 In later layers these edges and corners can be brought together to 
recognize features such as nose, mouth shapes, faces in subsequent 
layers and in the later layers, the appearance of the person and 
objects in the scene.

deep learning systems work on this principle.
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Deep Learning Aprroaches
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In this lesson, we will focus on two approaches:

1. Convolutional Deep Neural Networks

2. Recurrent Deep Neural Networks
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Convolutional Neural Network

 Convolutional neural network (CNN) 
is a class of deep, feed-forward artificial 
neural network.

 CNNs use a variation of multilayer 
perceptrons designed to require minimal 
preprocessing.
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Convolutional Neural Network

 They have applications in

 image and video recognition, 

 recommender systems,

 natural language processing.
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Why CNN’s ? Over Ordinary 
neural networks ?

 Let’s say we are training a classifier to identify a 
cat using an ordinary neural net (where we have 
input, hidden and output layers)
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Why CNN’s ? Over Ordinary 
neural networks ?

Umut ORHAN, PhD.

Why CNN’s ? Over Ordinary 
neural networks ?

 An ordinary neural networks typically takes 
features as inputs, for this problem we take 
image array as inputs, so we have a vector, size 
of (image width*height) as an input.

 We feed it to the model and train it (back 
propagation) for many images for many 
iterations.
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Why CNN’s ? Over Ordinary 
neural networks ?

 Once the network is trained then we can give 
another cat picture to predict (to get the score) 
to see if it gives the result as cat(high 
probability score).

 well, it works, but wait..
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Why CNN’s ? Over Ordinary 
neural networks ?

The ordinary network may not predict well

What if I gave the test pictures like these for prediction.
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Why CNN’s ? Over Ordinary 
neural networks ?

 CNNs are used mainly to look for patterns in an image, 
we don’t need to give features, the CNN understands the 
right features by itself as it goes deep. This is one of the 
reasons why we need CNN’s. Period.

 And another reason is, ordinary neural networks don’t 
scale well for full sized images , let’s say that input 
images size =100(width) * 100 (height) * 3 (rgb).Then 
we need to have 30,000 neurons which is very expensive 
in the network.

 Hence we need to learn CNN.
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How does CNN work?

 For every image , it creates many images by 
applying some filters ( just like photo editing 
tools )

 These filters, we can call weights , kernels or 
features.

 They are initialized randomly first then during the 
training these weights will get updated (the 
network learns these weights)
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Design of CNN

 A CNN consists of an input and an output layer, 
as well as multiple hidden layers.

 The hidden layers of a CNN typically consist of

1. Convolutional Step, 

2. Non-Linearity Step

3. Pooling Step

4. Fully Connected Layers
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Design of CNN
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Convolution Step

 The primary purpose of Convolution in case of a 
CNN is to extract features from the input image.

 Convolution preserves the spatial relationship 
between pixels by learning image features using 
small squares of input data.
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Convolution Step

Image Filter
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Convolution Step
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Convolution Step

 We slide the orange matrix over our original 
image (green) by 1 pixel (also called ‘stride’) and 
for every position,

 We compute element wise multiplication 
(between the two matrices) 

 Add the multiplication outputs to get the final 
integer which forms a single element of the 
output matrix (pink). 

 Note that the 3×3 matrix “sees” only a part of 
the input image in each stride.
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Convolution Step

 In CNN terminology, the 3×3 matrix is called a 
‘filter‘ or ‘kernel’ or ‘feature detector’ and the 
matrix formed by sliding the filter over the image 
and computing the dot product is called the 
‘Convolved Feature’ or ‘Activation Map’ or 
the ‘Feature Map‘.

 Note that filters acts as feature detectors from 
the original input image.
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Convolution Step

 In practice, a CNN learns the values of these 
filters on its own during the training process 
(although we still need to specify parameters 
such as number of filters, filter size, architecture 
of the network etc. before the training process). 

 The more number of filters we have, the more 
image features get extracted and the better our 
network becomes at recognizing patterns in 
unseen images.
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Convolution Step
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Convolution Step

 The size of the Feature Map (Convolved Feature) 
is controlled by three parameters that we need 
to decide before the convolution step is 
performed:

 Depth

 Stride

 Zero-padding
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Convolution Step

Depth
Depth corresponds to the number of filters we use for 
the convolution operation.

Stride
Stride is the number of pixels by which we slide our 
filter matrix over the input matrix. When the stride is 1 
then we move the filters one pixel at a time. When the 
stride is 2, then the filters jump 2 pixels at a time as we 
slide them around. Having a larger stride will produce 
smaller feature maps.
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Convolution Step

Zero-Padding

Sometimes, it is convenient to pad the input matrix 
with zeros around the border, so that we can apply 
the filter to bordering elements of our input image 
matrix. A nice feature of zero padding is that it 
allows us to control the size of the feature maps. 
Adding zero-padding is also called wide convolution, 
and not using zero-padding would be a narrow 
convolution. 
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 An additional operation called ReLU has been 
used after every Convolution operation.

 ReLU stands for Rectified Linear Unit and is a 

non-linear operation.

Non-Linearity Step
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Non-Linearity Step

 non linear functions such as

 tanh ,

 sigmoid,

 ReLU(rectified linear unit)

 But ReLU has been found to perform better 
in most situations.
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 ReLU is an element wise operation (applied per 
pixel) and replaces all negative pixel values in the 
feature map by zero. 

 The purpose of ReLU is to introduce non-linearity in 
our ConvNet, since most of the real-world data we 
would want our ConvNet to learn would be non-
linear (Convolution is a linear operation – element 
wise matrix multiplication and addition, so we 
account for non-linearity by introducing a non-linear 
function like ReLU).

Non-Linearity Step
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 It shows the ReLU operation applied to one of 
the feature maps obtained

Non-Linearity Step
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The Pooling Step

 Spatial Pooling (also called subsampling or 
downsampling) reduces the dimensionality of each 
feature map but retains the most 
important information.

 Spatial Pooling can be of different types: Max, 
Average, Sum etc.
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The Pooling Step

 In case of Max Pooling, we define a spatial 
neighborhood (for example, a 2×2 window) and 
take the largest element from the rectified 
feature map within that window. 

 Instead of taking the largest element we could 
also take the average (Average Pooling) or 
sum of all elements in that window. 

 In practice, Max Pooling has been shown to 
work better.
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The Pooling Step

 An example of Max Pooling operation on a Rectified 
Feature map (obtained after convolution + ReLU
operation) by using a 2×2 window.
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The Pooling Step

Pooling operation is applied separately to each feature 
map (notice that, due to this, we get three output maps 
from three input maps).
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The Pooling Step

Max and Sum Pooling
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Fully Connected Layer

 The Fully Connected layer is a traditional Multi-
Layer Perceptron that uses a softmax activation 
function in the output layer.

 The term “Fully Connected” implies that every 
neuron in the previous layer is connected to 
every neuron on the next layer.
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Fully Connected Layer

 The output from the convolutional and pooling 
layers represent high-level features of the input 
image.

 The purpose of the Fully Connected layer is to 
use these features for classifying the input image 
into various classes based on the training 
dataset.
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Fully Connected Layer

• The sum of output probabilities from the Fully 
Connected Layer is 1. This is ensured by using the 
Softmax as the activation function in the output layer of 
the Fully Connected Layer. The Softmax function takes a 
vector of arbitrary real-valued scores and squashes it to 
a vector of values between zero and one that sum to 
one.
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Fully Connected Layer

 Apart from classification, adding a fully-
connected layer is also a (usually) cheap way of 
learning non-linear combinations of these 
features. Most of the features from convolutional 
and pooling layers may be good for the 
classification task, but combinations of those 
features might be even better. 
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Introduction to RNN 

• Recurrent Neural Network (RNN) was 
introduced at first in 1986.

• Traditional feed forward network assume 
that all inputs and outputs are independent 
of each other.

• The internal state maintains a memory 
about history of all past inputs.
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• The network contains at least one feed-back 
connection, so the activations can flow round in a 
loop.

• That enables the networks to do temporal 
processing and learn sequences.

• Recurrent neural networks (RNNs) are often used for 
handling sequential data. 

Example: if you want to predict the next word 
in a sentence you need to know which words came 
before it

Introduction to RNN 
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Feed forward networks
• Information only flows one way
• One input pattern produces (same) one output
• No memory of previous state

Recurrent Neural Networks
• Nodes connect back to other nodes and/or themselves
• Information flow is multidirectional
• Memory of previous state(s)
• RNNs are more “biologically realistic” because of the 

recurrent connectivity found in the visual cortex of the 
brain

Introduction to RNN 
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RNN Architecture 

• In the diagram, a chunk of neural network, s, looks 
at some input 𝑥𝑡 and outputs a value 𝑜𝑡. A loop 
allows information to be passed from one step of the 
network to the next.
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RNN Architecture 
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RNN Architecture 

• 𝑥𝑡 = input at time step t. 

• 𝑠𝑡 = hidden state at time step t. Calculated based on the 
previous hidden state and the input at the current step: 

𝑠𝑡 = f(U 𝑥𝑡 + W 𝑠𝑡−1). 

• f = activation function (tanh, ReLU, etc). 

• 𝑠−1, required to calculate first hidden state, typically 
initialized to all zeroes. 

• 𝑜𝑡 = output at step t. 

𝑜𝑡 = 𝑊ℎ𝑦 ∗ 𝑠𝑡
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RNN Architecture 
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RNN Architecture 

 This is in fact a type of
recurrent neural network —
 a one to one recurrent net,
because it maps one input to
one output. A one to one
recurrent net is equivalent to
an artificial neural net.

Umut ORHAN, PhD.

 One input is mapped to 
multiple outputs. An example 
of this would be image 
captioning — the input would 
be the image in some 
processed form and the output 
would be a sequence of words. 

RNN Architecture 
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 The input is in the form of 
a sequence, and so the 
hidden states are 
functionally dependent 
on both the input at that 
time step and the 
previous hidden state. 

RNN Architecture 
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 The final type of recurrent net 
is many to many, where both 
the input and output are 
sequential.

 A use case would be machine 
translation where a sequence 
of words in one language 
needs to be translated to a 
sequence of words in 
another.

RNN Architecture 
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• Another type of many to many 
architecture exists where each 
neuron has a state at every time 
step, in a “synchronized” fashion. 
Here, each output is only 
dependent on the inputs that were 
fed in during or before it. Because 
of this, synchronized many to 
many probably wouldn’t be 
suitable for translation.

RNN Architecture 
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RNN Variants

RNNs come in many variants:

• Simple Recurrent Networks

• Long Short Term Memory (LSTM)

• Convolutional Recurrent Neural Networks
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Simple RNN: Elman Network

• It first used by Jeff Elman (1990).

• The SRN is a specific type of back-propagation 
network.

• It assumes a feed-forward architecture, with units 
in input, hidden, and output pools.

• It also allows for a special type of hidden layer 
called a “context” layer.
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• Copy inputs for time t to the 
input units.

• Compute hidden unit 
activations using net input 
from input units and from 
copy layer.

• Compute output unit 
activations as usual.

• Copy new hidden unit 
activations to copy layer.

Simple RNN: Elman Network
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Backpropagation Through 
Time 

• The Backpropagation Through Time (BPTT) learning 
algorithm is a natural extension of standard 
backpropagation that performs gradient descent on 
a complete unfolded network.

• The more context (copy layers) we maintain, the 
more history explicitly include in our gradient 
computation.

• The downside of BPTT is that it requires a large 
amount of resources
 Storage – entire history needs to be stored
 Computation – Gradient calculations for all layers
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Long Short Term Memory

• Introduced by Hochreiter & Schmidhuber
(1997).

• Long-Short Term Memory (LSTM) maintain a 
more constant error flow in the backpropogation
process.

• LSTM can learn over more than 1000 time steps 
, and thus can handle large sequences that are 
linked remotely.
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Long Short Term Memory

• LSTM networks introduce a new structure called 
a memory cell

• Each memory cell contains three gates: 
 Input gate

 Forget gate

 Output gate
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Long Short Term Memory

• Forget Gate

𝑓 = 𝜎 𝑥𝑡𝑈
𝑓 + 𝑠𝑡−1𝑊

𝑓

• Input Gate

𝑖 = 𝜎 𝑥𝑡𝑈
𝑖 + 𝑠𝑡−1𝑊

𝑖

• Output Gate
𝑜 = 𝜎 𝑥𝑡𝑈

𝑜 + 𝑠𝑡−1𝑊
𝑜
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Long Short Term Memory

Umut ORHAN, PhD.

Convolutional RNN

• Convolutional neural networks (CNN) are 
able to extract higher level features that are 
invariant to local spectral and temporal 
variations. 

• Recurrent neural networks (RNNs) are 
powerful in learning the longer term 
temporal context.

• It can be described as a modified CNN by 
replacing the last convolutional layers with a 
RNN.
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Convolutional RNN

• The key module of this RCNN are the 
recurrent convolution layers (RCL).

• The network can evolve over time though 
the input is static and each unit is 
influenced by its neighboring units. 
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RNN Example

• The neural network has the vocabulary: h, e, l , 
o. 

• That is, it only knows these four characters; 
exactly enough to produce the word “hello”. 

• We will input the first character, “h”, and from 
there expect the output at the following time 
steps to be: “e”, “l”, “l”, and “o” respectively, to 
form: hello
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RNN Example

• We can represent input and output via one hot 
encoding, where each character is a vector with a 
1 at the corresponding character position and 
otherwise all 0s. 

• For example, since our vocabulary is [h, e, l, o], 
we can represent characters using a vector with 
four values, where a 1 in the first, second, third, 
and fourth position would represent “h”, “e”, “l”, 
and “o” respectively.
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RNN Example
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RNN Example

 As you can see, we input the first letter and the 
word is completed. 
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RNN Example

 One interesting technique would be to sample 
the output at each time step and feed it into the 
next as input:
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RNN Example

• Each hidden state would contain a similar sort of vector, 
though not necessarily something we could interpret like 
we can for the output.

• The RNN is saying: given “h”, “e” is most likely to be the 
next character. Given “he”, “l” is the next likely character. 
With “hel”, “l” should be next, and with “hell”, the final 
character should be “o”.

• But, if the neural network wasn’t trained on the word 
“hello”, and thus didn’t have optimal weights (ie. just 
randomly initialized weights), then we’d have garble like 
“hleol” coming out.
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CNN vs. RNN

• RNN can handle arbitrary 
input/output lengths.

• RNN unlike feed forward 
neural networks - can use 
their internal memory to 
process arbitrary 
sequences of inputs.

• RNNs are ideal for text 
and speech analysis.

• RNN will learn to 
recognize patterns across 
time.

• CNN takes a fixed size 
inputs and generates 
fixed-size outputs.

• CNN is a type of feed-
forward artificial neural 
network.

• CNNs are ideal for images 
and video processing.

• CNN will learn to 
recognize patterns across 
space.


