In	troduct	tion to	Machin	e Learning	Midterm	Exam

No:

Name:											
1. dataset				2. dataset					3. dataset		
X_1	X_2	D		X_1	X_2	X_3	D		$X_1 \mid X_2$	D	
2	1	а		В	Р	G	Η		1 2	0	
1	3	a		В	Ν	Т	Н		-1 3	1	
0	-2	b		В	Р	Т	S		0 1	1	
-1	-1	b		Κ	Ν	G	S		i		

- 1. By applying 1-NN on the first dataset, find the classes of (3,2) and (1,-1) data points. (Note that you can use Manhattan distance)
- 2. On the second dataset, by applying ID3 method, find the first branching criterion?
- 3. With Naive Bayes and the second dataset, find the class label of (B, P, G) data point.
- 4. For the third dataset, with Least Squares method, find the weights (w_1 and w_2) in the equation of $w_1X_1+w_2X_2=D$, and compute the MSE. (Note that all variables start at 0.5)
- 5. Let be a system with two inputs (X and Y) and one output (Z). The designed sugeno fuzzy inference system has some properties:
 - a. X input can be between [-30 40], and we decide 2 fuzzy sets (trapezoid) as A₁ (0, 0, 0.5, 1), and A₂ (0, 0.5, 1, 1)
 - b. Y input can be between [0 90], and we decide 3 sets (triangle) as B_1 (0, 0, 0.5), B_2 (0, 0.5, 1), and B_3 (0.5, 1, 1)
 - c. Z output can be between [0 500], and we decide 3 singleton sets as $C_1(0)$, $C_2(0.5)$, and $C_3(1)$
 - d. Also we decide three rules as

Rule 1.IF X is A_1 AND Y is B_1 THEN Z is C_1 Rule 2.IF X is A_1 AND Y is B_2 THEN Z is C_2 Rule 3.IF X is A_2 AND Y is B_3 THEN Z is C_3

Compute the output value for X=5 and Y=30.