X_1	X_2	
2	3]
5	4	
0	5	ţ
-3	0	

By using Manhattan distance and the initial clusterr centers given below, find new position of the cluster centers after the first iteration. Consider as c1=(0, 1) and c2=(5, 5).

d1c1 = 0-2 + 1-3 = 4	d1c2 = 5-2 + 5-3 = 5	(the first sample belongs to c1)
d2c1 = 0-5 + 1-4 = 8	d2c2 = 5-5 + 5-4 = 1	(the second sample belongs to c2)
d3c1 = 0-0 + 1-5 = 4	d3c2 = 5-0 + 5-5 = 5	(the third sample belongs to c1)
d4c1 = 0-(-3) + 1-0 = 4	d4c2= 5-(-3) + 5-0 =13	(the fourth sample belongs to c1)

according to data points, we can update the cluster centers c1 = mean(xi belongs to c1) (-1/3, 8/3)c2 = (5, 4)

X_1	X_2	D	
2	3	Α	
5	4	В	
0	5	Α	
-3	0	В	

By using Manhattan distance and K=1, find the class of (-2, 2)

d1=|-2-2|+|2-3|=5 d2=|-2-5|+|2-4|=9 d3=|-2-0|+|2-5|=5d4=|-2+3|+|2-0|=3

because the nearest one point is fourth data point, its class is B

for K=3, find the class of (-2, 2)

We found the nearest three data points in dataset are x1,x3,x4. Among (A,A,B) classes we have to choose "A" as major

for K=3, find the class of (5, 3)

Because the nearest three points are the first three data points, its class is A.