X_{1}	X_{2}
2	3
5	4
0	5
-3	0

By using Manhattan distance and the initial clusterr centers given below, find new position of the cluster centers after the first iteration. Consider as $\mathrm{c} 1=(0,1)$ and $\mathrm{c} 2=(5,5)$.
d1c1 $=|0-2|+|1-3|=4 \quad$ d1c2 $=|5-2|+|5-3|=5 \quad$ (the first sample belongs to c1)
$\mathrm{d} 2 \mathrm{c} 1=|0-5|+|1-4|=8 \quad$ d2c2 $2=|5-5|+|5-4|=1 \quad$ (the second sample belongs to c 2)
$\mathrm{d} 3 \mathrm{c} 1=|0-0|+|1-5|=4 \quad \mathrm{~d} 3 \mathrm{c} 2=|5-0|+|5-5|=5 \quad$ (the third sample belongs to c 1)
$\mathrm{d} 4 \mathrm{c} 1=|0-(-3)|+|1-0|=4 \quad \mathrm{~d} 4 \mathrm{c} 2=|5-(-3)|+|5-0|=13$ (the fourth sample belongs to c 1)
according to data points, we can update the cluster centers
$\mathrm{c} 1=$ mean(xi belongs to c 1$)(-1 / 3,8 / 3)$
c2 $=(5,4)$

X_{1}	X_{2}	D	By using Manhattan distance and $\mathrm{K}=1$, find the class of (2, 2)
2	3	A	
5	4	B	
0	5	A	
-3	0	B	

$$
\begin{aligned}
& \mathrm{d} 1=|-2-2|+|2-3|=\mathbf{5} \quad \mathrm{d} 2=|-2-5|+|2-4|=\mathbf{9} \quad \mathrm{d} 3=|-2-0|+|2-5|=\mathbf{5} \\
& \mathrm{d} 4=|-2+3|+|2-0|=\mathbf{3}
\end{aligned}
$$

because the nearest one point is fourth data point, its class is B
for $K=3$, find the class of $(-2,2)$
We found the nearest three data points in dataset are $\mathrm{x} 1, \mathrm{x} 3, \mathrm{x} 4$. Among (A,A,B) classes we have to choose "A" as major
for $\mathrm{K}=3$, find the class of $(5,3)$
Because the nearest three points are the first three data points, its class is A .

