Using C4.5, find the first braching factor for dataset given below.

X_1	X_2	X_3	X_4	D
Κ	Р	G	5	Η
Κ	Ν	G	1	Η
В	Е	G	3	Η
В	Р	G	5	S
В	Ν	Т	-1	S
Κ	Е	Т	2	S

1. Compute independent class entropy

 $H(D) = -(0.5*log_20.5+0.5*log_20.5)=1$

2. Make unique and sort X₄ values at first.

*X*₄ -1 1 2 3 5

3. Determine all thresholds for X_4

 $t_1 = (-1+1)/2 = 0$ $t_2 = (1+2)/2 = 1.5$ $t_3 = (2+3)/2 = 2.5$ $t_4 = (3+5)/2 = 4$

4. By using each threshold, prepare the dataset again. Then compute entropy for each new table. According to information gain, choose the best dataset (so threshold).

for t ₁ =0		for t ₂ =1.5		for ta	for t ₃ =2.5	
X_4	D		X_4	D	X_4	D
А	Η		А	Η	А	Н
А	Η		В	Н	В	Н
А	Η		А	Н	А	Н
А	S		Α	S	А	S
В	S		В	S	В	S
А	S		Α	S	В	S

101 14	for t ₄ =4		
X_4	D		
A	Η		
В	Η		
В	Η		
A	S		
В	S		
В	S		

$$\begin{split} H(X_{4t_1}|D) &= 5/6^*H(A) + 1/6^*H(B) = 5/6(-(0.6^*\log_2 0.6 + 0.4^*\log_2 0.4)) + 1/6^* 0 \approx \textcircled{0.81} \\ H(X_{4t_2}|D) &= 4/6^*H(A) + 2/6^*H(B) = 4/6^* 1 + 2/6^* 1 = 1 \\ H(X_{4t_3}|D) &= 3/6^*H(A) + 3/6^*H(B) = 3/6^*(-(2/3^*\log_2 2/3 + 1/3^*\log_2 1/3)) + 3/6^*(-(1/3^*\log_2 1/3 + 2/3^*\log_2 2/3)) \approx 0.92 \\ H(X_{4t_4}|D) &= 2/6^*H(A) + 4/6^*H(B) = 1 \end{split}$$

Because the maximum information gain is obtained from the first threshold (t_1) , choose it as the threshold.

5. Compute the entropy for all other categorical features in the table. According to information gain, choose the best feature.

 $H(X_1|D) = 1/2*H(K)+1/2H(B) \approx 0.92$

 $H(X_2|D) = 1/3*H(P)+1/3*H(N)+1/3*H(E) = 1$

 $H(X_3|D) = 4/6*H(G) + 2/6*H(T) = 4/6(-(0.25*\log_2 0.25+0.75*\log_2 0.75)) + 2/6*0 \approx 0.54$

6. Calculate information gain for each feature

$$\begin{split} IG(X_1) &= H(D) - H(X_1|D) = 1 - 0.92 = 0.08\\ IG(X_2) &= H(D) - H(X_2|D) = 1 - 1 = 0\\ IG(X_3) &= H(D) - H(X_3|D) = 1 - 0.54 = 0.46\\ IG(X_4) &= H(D) - H(X_4|D) = 1 - 0.81 = 0.19 \end{split}$$

According to the maximum information gain, we choose the third feature (X_3) for the first branching.