According to Naive Bayes method, find classes of (K, P, T, 6).

X_{1}	X_{2}	X_{3}	X_{4}	D
K	P	G	2	H
K	N	G	3	H
B	E	G	1	H
B	P	G	3	S
B	N	T	5	S
K	E	T	4	S

$$
\begin{array}{ll}
\mu_{\mathrm{H}}=2 & \sigma_{\mathrm{H}}=1 \\
\mu_{\mathrm{S}}=4 & \sigma_{\mathrm{S}}=1
\end{array}
$$

$$
\mathrm{P}\left(\mathrm{X}_{4}=6 \mid \mathrm{H}\right)=0.00013
$$

$$
\mathrm{P}\left(\mathrm{X}_{4}=6 \mid \mathrm{S}\right)=0.054
$$

For overcome zero divide problem, let be " $\mathrm{a}=1 \mathrm{e}-10$ "
$\mathrm{P}(\mathrm{H} \mid \mathrm{K}, \mathrm{P}, \mathrm{T}, 6)=\mathrm{P}(\mathrm{H}) \mathrm{P}\left(\mathrm{X}_{1}=\mathrm{K} \mid \mathrm{H}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{P} \mid \mathrm{H}\right) \mathrm{P}\left(\mathrm{X}_{3}=\mathrm{T} \mid \mathrm{H}\right) \mathrm{P}\left(\mathrm{X}_{4}=6 \mid \mathrm{H}\right)$

$$
=1 / 2 * 2 / 3 * 1 / 3 *(a+0) /(a+3) * 0.00013=\frac{a * 0.00013}{3 * 3 *(a+3)}
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~S} \mid \mathrm{K}, \mathrm{P}, \mathrm{~T}, 6) & =\mathrm{P}(\mathrm{~S}) \mathrm{P}\left(\mathrm{X}_{1}=\mathrm{K} \mid \mathrm{S}\right) \mathrm{P}\left(\mathrm{X}_{2}=\mathrm{P} \mid \mathrm{S}\right) \mathrm{P}\left(\mathrm{X}_{3}=\mathrm{T} \mid \mathrm{S}\right) \mathrm{P}\left(\mathrm{X}_{4}=6 \mid \mathrm{S}\right) \\
& =1 / 2 * 1 / 3 * 1 / 3 *(\mathrm{a}+2) /(\mathrm{a}+3) * 0.054=\frac{(a+2) * 0.054}{2 * 3 * 3 *(a+3)}
\end{aligned}
$$

Because $\mathrm{P}(\mathrm{S} \mid \mathrm{K}, \mathrm{P}, \mathrm{T}, 6)>\mathrm{P}(\mathrm{H} \mid \mathrm{K}, \mathrm{P}, \mathrm{T}, 6)$, as a new record, the class of $(\mathrm{K}, \mathrm{P}, \mathrm{T}, 6)$ is " S ".

