X_{1}	X_{2}	D
2	3	1
5	4	0
1	5	1

By using perceptron (single neuron) method, find the weights of neuron model after the first iteration only. (Note: we can accept the initial values of all weights (also theta) as zero, and learning rate is 0.5)

```
w1=0
w2=0
b=0
Q=0
eta=0.5
```

compute net1 (for the first sample 2,3:1)
net1 $=2 * 0+3 * 0+0=0$
$\mathrm{y} 1=0$ but since $\mathrm{d} 1=1$ e1=d1-y1=1
Dw1 $=0.5^{*} 1^{*} 2=1 \rightarrow \mathrm{w} 1=\mathrm{w} 1+\mathrm{Dw} 1=0+1=1$
Dw2 $=0.5^{*} 1 * 3=1.5 \rightarrow \mathrm{w} 2=\mathrm{w} 2+\mathrm{Dw} 2=0+1.5=1.5$
$\mathrm{Db}=0.5^{*} 1=0.5 \rightarrow \mathrm{~b}=\mathrm{b}+\mathrm{Db}=0+0.5=0.5$
compute net2 (for the second sample 5,4:0)
net2 $=5 * 1+4 * 1.5+0.5=11.5$
$\mathrm{y} 2=1$ but since d2=0 e2=d2-y2=-1
Dw1 $=0.5^{*}-1 * 5=-2.5 \rightarrow \mathrm{w} 1=\mathrm{w} 1+\mathrm{Dw} 1=1-2.5=-1.5$
Dw2 $=0.5^{*}-1 * 4=-2 \rightarrow \mathrm{w} 2=\mathrm{w} 2+\mathrm{Dw} 2=1.5-2=-0.5$
$\mathrm{Db}=0.5^{*}-1=-0.5 \rightarrow \mathrm{~b}=\mathrm{b}+\mathrm{Db}=0.5-0.5=0$
compute net 3 (for the third sample 1,5:1)
net3=1*-1.5 $+5^{*}-0.5+0=-4$
y3 $=0$ but since d3=1 e3=d3-y3=1
Dw1 $=0.5 * 1^{*} 1=0.5 \rightarrow \mathrm{w} 1=\mathrm{w} 1+\mathrm{Dw} 1=-1.5+0.5=-1$
Dw2 $=0.5^{*} 1 * 5=2.5 \rightarrow \mathrm{w} 2=\mathrm{w} 2+\mathrm{Dw} 2=-0.5+2.5=2$
$\mathrm{Db}=0.5^{*} 1=0.5 \rightarrow \mathrm{~b}=\mathrm{b}+\mathrm{Db}=0+0.5=0.5$
$\mathrm{w} 1=-1 \mathrm{w} 2=2 \mathrm{~b}=0.5$

In order to find MSE,
compute net1 (for the first sample 2,3:1)
net $1=2 * w 1+3^{*} w 2+b=4.5 \quad y 1=1$ since $d 1=1$ e1=d1-y1=0
compute net2 (for the second sample 5,4:0)
net $2=5^{*} w 1+4^{*} w 2+b=3.5 \quad y 2=1$ since $d 2=0$ e2 $=d 2-y 2=-1$
compute net3 (for the third sample 1,5:1)
net3 $=1^{*} w 1+5^{*} w 2+b=9.5 \quad y 3=1$ since $d 3=1$ e3=d3-y3=0
MSE $=\left(0^{2}+(-1)^{2}+0^{2}\right) / 3=0.33$

By using adaline (single neuron) method, find the weights of neuron model after the first iteration only. (Note: we can accept the initial values of all weights (also theta) as zero, and learning rate is 0.5)

```
w1=1
w2=-1
b=0
eta=0.5
```

compute net1 (for the first sample 2,3:1)
net1 $=2 * 1+3^{*}-1+0=-1$
$y 1=0$ since d1 $=1 \quad e 1=$ d1-net1 $=1-(-1)=2$
Dw1 $=0.5 * 2 * 2=2 \rightarrow \mathrm{w} 1=\mathrm{w} 1+\mathrm{Dw} 1=1+2=3$
Dw2 $=0.5 * 2 * 3=3 \rightarrow \mathrm{w} 2=-1+3=2$
$\mathrm{Db}=0.5^{*} 2=1 \rightarrow \mathrm{~b}=0+1=1$
compute net2 (for the second sample 5,4:0)
net $2=5 * 3+4 * 2+1=24$
$\mathrm{y} 2=1$ but since d2=0 e2=d2-net2=0-24=-24
Dw1 $=0.5^{*}(-24) * 5=-60 \rightarrow \mathrm{w} 1=3-60=-57$
Dw2 $=0.5^{*}(-24)^{*} 4=-48 \rightarrow \mathrm{w} 2=2-48=-46$
$\mathrm{Db}=0.5^{*}(-24)=-12 \rightarrow \mathrm{~b}=1-12=-11$
compute net3 (for the third sample 1,5:1)
net $3=1 *(-57)+5^{*}(-46)-11=-298$
$y 3=0$ since d3=1 e3=d3-net3=1-298=-297
Dw1 $=0.5^{*}(-297)^{*} 1=-148.5 \rightarrow \mathrm{w} 1=-57-148.5=-205.5$
Dw2 $=0.5^{*}(-297)^{*} 5=-742.5 \rightarrow \mathrm{w} 2=-46-742.5=-788.5$
$\mathrm{Db}=0.5^{*}(-297)=-148.5 \rightarrow \mathrm{~b}=-11-148.5=-159.5$
$\mathrm{w} 1=-205.5 \mathrm{w} 2=-788.5 \mathrm{~b}=-159.5$

