Automata Teory Course Quiz-1.b (2015-2016 Fall)
 (Please use free space for draft and fit your answer to boxes.)

1. $(50 P)$ Express what DFA at the right does as a sentence. $(\Sigma=\{\mathrm{a}, \mathrm{b}\})$

Briefly, it accepts binary $\{a, b\}$ words in which the number of its b's must be relativily prime with three.

But we can consider each state as an independent language

$$
\begin{aligned}
L_{q 1} & =a \cdot L_{q 1} \cup b . L_{q 2} \\
L_{q 2} & =\varepsilon \cup a . L_{q 2} \cup b . L_{q 3} \\
L_{q 3} & =\varepsilon \cup a . L_{q 3} \cup b \cdot L_{q 1}
\end{aligned}
$$

Because $L_{q 2}$ depend on $L_{q 3}$, we should reduce $L_{q 3}$

$$
L_{q 3}=\varepsilon \cup a . L_{q 3} \cup b . L_{q 1}=a^{*} \cup a^{*} b . L_{q 1}
$$

Because $L_{q 1}$ depend on $L_{q 2}$, we should reduce also $L_{q 2}$

$$
L_{q 2}=\varepsilon \cup a . L_{q 2} \cup b \cdot\left(a^{*} \cup a^{*} b . L_{q 1}\right)=a^{*}\left(\varepsilon \cup b a^{*} \cup b a^{*} b . L_{q 1}\right)
$$

We should organize $L_{q 1}$ by placing $L_{q 2}$
$L_{q 1}=a . L_{q 1} \cup b a^{*}\left(\varepsilon \cup b a^{*} \cup b a^{*} b . L_{q 1}\right)=\left(a \cup b a^{*} b a^{*} b\right) . L_{q 1} \cup b a^{*} \cup b a^{*} b a^{*}$ $L_{q 1}=\left(a \cup b a^{*} b a^{*} b\right)^{*}\left(b a^{*} \cup b a^{*} b a^{*}\right)$
2. ($50 P$) Design such a DFA that its regular expression is $(a \cup b) a^{*} b$. $(\Sigma=\{\mathrm{a}, \mathrm{b}\})$

We should evaluate the given RegEx as a problem definition.

