Automata Teory Course Quiz-3a (2016-2017Fall)
 (Please use free space for draft and fit your answer to boxes.)

1. ($50 P$) For language L used $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ alphabet, pair of 'aa' shows that a word ends and another begins. Without adding any symbol to Γ alphabet, prepare a Turing function that writes the second tape 'a' letters as much as number of words in the first tape.

$$
\begin{aligned}
& \mathrm{q}_{0} \mathrm{a} \# \rightarrow \mathrm{q}_{1} \text { aa } \mathrm{RR} \\
& \mathrm{q}_{0} \mathrm{~b} \# \rightarrow \mathrm{q}_{1} \text { ba } R R \\
& \mathrm{q}_{0} \# \# \rightarrow \mathrm{q}_{\text {accept }} \\
& \mathrm{q}_{1} \mathrm{a} \# \rightarrow \mathrm{q}_{2} \text { a\# RN } \\
& \mathrm{q}_{1} \mathrm{~b} \# \rightarrow \mathrm{q}_{1} \text { b\# RN } \\
& \mathrm{q}_{1} \# \# \rightarrow \mathrm{q}_{\text {accept }} \\
& \mathrm{q}_{2} \mathrm{a} \# \rightarrow \mathrm{q}_{1} \text { aa RR } \\
& \mathrm{q}_{2} \mathrm{~b} \# \rightarrow \mathrm{q}_{1} \text { b\# RN } \\
& \mathrm{q}_{2} \# \# \rightarrow \mathrm{q}_{\text {accept }}
\end{aligned}
$$

2. $(50 P) \mathrm{L}=\left\{a^{2^{n}} b^{n} \mid n \geq 0\right\}$ then comment language L in view of enumerability.

- Since n shows repetition number of symbols, it can be only natural number.
- By using natural number n, we can enumerate all strings in L.

$$
\begin{array}{cccc}
\mathrm{L}=\{\mathrm{a}, \text { aab, } & \text { aaaabb , aaaaaaabbb }, \ldots \\
0 & 1 & 2 & 3
\end{array}
$$

- So L is enumerable.

