Student	ID	:	
Name		:	

Theory of Computation final exam (2017-2018 Fall) (Please use free space for draft and fit your answer to boxes.)

1.	(25 <i>P</i>) Prepare Chomsky normal form of A->aA Ad B, B-> bBc b
2.	(25 P) Design such a Turing machine that writes letter "c"s to the second tape as much as a b . Here, a is the number of "a"s and b is the number of "b"s in the first tape. For example, if the user enters "aabbb" in the first tape, the Turing code writes "ccccccc" into the second tape because of 2^3 (the number of "a"s is 2 and the number of "b"s is 3) computation.
	(25 D) Assume that any plactrial ago in the world gap my infinite time. When we want to
э. —	(25 <i>P</i>) Assume that any electrical car in the world can run infinite time. When we want to prepare a software to compute the total road amount (as distance) where all electrical cars in the world can go, how can we comment this software in terms of decidability?

4. (25 <i>P</i>) Descripolynomial time.	ibe a	transform	3SAT	problem	into	3COLORING	with	an	algorithm	in