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OPERATING SYSTEMS

VIRTUAL MEMORY

9 Virtual Memory

� All the memory management policies try to keep a 
number of processes in the memory at the same time 
to allow multiprogramming. But they require process 
to be loaded in the memory before execution.

� With the virtual memory technique, we can execute a 
process which is only partially loaded in memory. 
Thus, the logical address space may be larger than 
physical memory, and we can execute more processes 
in memory at a time.
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9 Virtual Memory

� By means of virtual memory,

� Only part of the program needs to be in memory for 
execution

� Logical address space can therefore be much larger than 
physical address space

� A greater degree of multiprogramming can be possible

� OS allows more efficient process creation

� Virtual memory can be implemented by:

� Demand paging 

� Demand segmentation
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9 Virtual Memory
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9.1 Demand Paging

� Demand paging is the most common virtual memory 
management system. In demand paging, programs 
reside on a swapping device commonly known as the 
backing store. The backing store, for most of today’s 
operating systems is a disk.

� When the operating system decides to start a new 
process, it swaps only a small part of this new process 
into memory. 
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9.1 Demand Paging

� The page table of this new process is prepared and 
loaded into memory. In the page table, there is a 
column to show valid/invalid bits which show whether 
that page in memory (valid) or not (invalid).

� If the executing process tries to access a page which 
is not in the memory (invalid), a page fault occurs.
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9.2 Valid-Invalid Bit

� With each page table entry a valid–invalid bit is associated
(v⇒ in-memory, i ⇒ not-in-memory)

� Initially valid–invalid bit is set to i for all entries

� During address translation, if valid–invalid bit in page table 
entry is i, it means that a page fault will occur for this entry.

Example of a page table snapshot:
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9.3 Page Faults

� When a page fault happened, the OS finds the 
desired page on the disk and looks for a free frame 
on the main memory. If there is no free frame, the 
OS must choose a frame to swap it out to the disk.

� Then, the valid/invalid bit of the chosen page is 
changed as “i”. 

� Now the desired page is swapped into newly freed 
frame, its frame table is modified, and the 
valid/invalid bit of it is set to valid.
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9.3 Page Faults

� Trap the OS. Save registers and process state for the current 
process.

� Check whether the page reference is valid, when a page fault 
occurred.

� If yes, determine the location of the required page on the backing 
store.

� Find a free frame and swap in the required page from the backing 
store into the free frame.

� When I/O is completed, restore registers and process state for the 
process which caused the page fault and save state of the currently 
executing process.

� Modify the corresponding page table entry to show that the 
recently copied page is now in memory.

� Restart instruction that caused the page fault.
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9.3 Page Faults
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9.3 Page Faults

These operations can be summarized as:

� (FAST) Checking the address and choosing a frame

� (SLOW) Swap out the chosen frame to secondary 
storage (mostly disk is used)

� (SLOW) Swap in the page from secondary storage 
into the vacated frame.

� (FAST) Restart the process

In servicing a page fault, the time is spent mainly for 
swap-out and swap-in. The periods of other operations 
can be negligible.
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9.4 Performance

� Page Fault Probability 0 ≤ p ≤ 1.0

� if p = 0, it means no page faults 

� if p = 1, every reference is a fault

� Effective Access Time (eat) = (1 – p) * eatno-pf + p * eatpf

� eatno-pf = memory access time

� eatpf = page fault overhead + swap page out

+ swap page in+ restart overhead

In briefly, eatpf can be represented by “page fault service time”.
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9.4 Performance

Example:

� Memory access time = 200 ns

� Average page fault service time = 8 ms

eat = (1 – p) x 200 ns + p x 8 ms

= 200 (1 – p) + 8,000,000 p

= 200 + 7,999,800 p    ns

� If one access out of 1000 (p=0.001) causes a page fault, then

eat = 8.2 ms 

According to eatno-pf, there is a slowdown by a factor of 40K.

13

9.5 Page Replacement

� A page replacement algorithm determines how the 
page to be replaced is selected when a page fault 
occurs. The aim is to minimize the page fault rate.

� The efficiency of a page replacement algorithm is 
evaluated by running it on a particular string of 
memory references and computing the number of 
page faults. Reference strings are either generated 
randomly, or by tracing the paging behavior of a 
system and recording the page number for each 
logical memory reference.

14

9.5 Page Replacement
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9.5 Page Replacement

Usual algorithm when a page fault occurred:

� Find the location of the desired page on disk

� Find a free frame:

� If there is a free frame, use it

� If there is no free frame, select a frame using a page 
replacement algorithm to move it into disk

� Bring  the desired page into the free frame; update 
the page and frame tables

� Restart the process
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9.5 Page Replacement
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9.5.1 Dirty Bit

� The dirty bit allows  performance optimization. 

� This strategy requires that the backing store retain a 
copy of the page after it was swapped into memory. 

� The dirty bit is set to “0” by the hardware when the 
page is swapped in. 

� When we select a frame by using a page 
replacement algorithm, we examine its dirty bit. 
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9.5.1 Dirty Bit

� If it is “1”, that means the page has been modified 
since it was swapped in. 

� In this case we have to copy that page into the 
backing store. 

� However if the dirty bit is “0”, that means the page 
has not been modified since it was swapped in, so the 
copy in the backing store is valid.  
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9.5.2 Optimal Page Replacement

� Optimal Page Replacement (OPT) chooses the page 
which will not be used for the longest period. 

� For a fixed number of frames, OPT has the lowest 
page fault rate among the page replacement 
algorithms. 

� But OPT is not possible to be implemented in practice. 
Because it requires future knowledge. However, it is 
used for performance comparison.

20

9.5.2 Optimal Page Replacement

Example

� Assume we have 3 frames and consider the reference 
string of 5, 7, 6, 0, 7, 1, 7, 2, 0, 1, 7, 1, 0

� Show the content of memory after each memory 
reference if OPT page replacement algorithm is used. 
Find also the number of page faults.

OPT finds 7 page faults.
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9.5.3 First-In-First-Out (FIFO)

The operating system keeps track of all the pages in 
memory in a queue, with the most recent arrival at the 
back, and the oldest arrival in front. When a page 
needs to be replaced, the page at the front of the 
queue is selected. 

For the same example:

FIFO finds 10 page faults.
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9.5.3 First-In-First-Out (FIFO)

Normally, while the total number of frames increases, 
decreasing of the number of page faults is expected.

However, for FIFO, there are some cases where this 
generalization fails. This is called Belady’s Anomaly.
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9.5.3 First-In-First-Out (FIFO)

As an exercise consider the reference string below, and 
find the number of page faults applying the FIFO 
method with 3 and 4 paged main memory. Then, 
examine whether the replacement suffer Belady’s
anomaly.

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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9.5.4 Least Recently Used (LRU)

In this algorithm, the chosen is the page that has not 
been used for the longest period. 

The OS sets the reference bit of a page to "1" when it 
is referenced. This bit will not give the order of use but 
it will simply tell whether the corresponding frame is 
referenced recently or not. The OS resets all reference 
bits periodically.
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9.5.4 Least Recently Used (LRU)

For the same string (5, 7, 6, 0, 7, 1, 7, 2, 0, 1, 7, 1, 0)

LRU finds 9 page faults.
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9.6 Frame Allocation

In order to be able to decide on the page replacement 
scheme of a particular reference string, we have to 
know the number of page frames available. In page 
replacement, some frame allocation policies may be 
followed.

� Global Replacement: A process can replace any 
page in the memory.

� Local Replacement: Each process can replace only 
from its own reserved set of allocated page 
frames.
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9.6 Frame Allocation

In case of local replacement, the operating system 
should determine how many frames should the OS 
allocate to each process. The number of frames for 
each process may be adjusted by using two ways:

� Equal Allocation

� Proportional Allocation
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9.6 Frame Allocation

�Equal allocation: If there are p processes and n 
frames, frame allocation for process p is as below:

f(p) = n / p

�Proportional allocation: If v(p) is virtual memory size 
of process p, there are m processes and n frames, 
then the total virtual memory size will be: 

V = Σv(p) 

Frame allocation for process p is as below:

f(p) = n * v(p) / V
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9.6 Frame Allocation

Example: Consider a system having 64 frames and 
there are 4 processes with the following virtual memory 
sizes: v(1) = 16, v(2) = 128, v(3) = 64 and v(4) = 48.

Equal Allocation

Assume that there are n frames, and p processes, then 
n/p frames are allocated to each process allocates 

64 / 4 = 16 frames to each process.
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9.6 Frame Allocation

Example: Consider a system having 64 frames and 
there are 4 processes with the following virtual memory 
sizes: v(1) = 16, v(2) = 128, v(3) = 64 and v(4) = 48.

Proportional Allocation

V = 16 + 128 + 64 + 48 = 256. It allocates:

(16  / 256) * 64 = 4   frames to process 1,

(128/ 256) * 64 = 32 frames to process 2,

(64  / 256) * 64 = 16 frames to process 3,

(48  / 256) * 64 = 12 frames to process 4.
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9.7 Thrashing

Because of frequent page faults, if a process is 
spending more time for paging in/out than executing, 
then it is called as thrashing. Thrashing causes 
considerable decreasing in system performance. If a 
process does not have enough number of frames, it will 
send a page fault. Although a page replacement is 
done, if all pages are in active use, another page 
selection to replace will be needed in a very short time. 
This means another page fault will be issued shortly, 
and so on.
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9.7 Thrashing

Local replacement algorithms can limit the effects of 
thrashing. If the degree of multiprogramming is 
increased over a limit, processor utilization falls down 
considerably because of thrashing.
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9.8 Working Set

To prevent thrashing, the process must be supported by 
providing as many frames as it needs. For this, a model 
called the working set model is developed. The working 
set of a process is the set of pages of the process that 
are currently resident in physical memory. 

The working set contains only pageable memory 
allocations; nonpageable memory allocations or large 
page allocations are not included in the working set.
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9.8 Working Set

� We shall use a parameter (T) called the working set 
window size. 

� We shall examine the last T page references. 

� The set of pages in the last page references shall be 
called the working set of a process.
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9.8 Working Set

T parameter is chosen so that all pages referenced in 
the last T seconds comprise the working set. 

� If T is chosen too small, it won’t cover entire working set. 

� If T is too large, several localities of a process may overlap.

Then, compute the WS size (WSS) for each process, and 
find the total demand (D) of the system at that time 
instance, as the summation of all the WS sizes.

D(tnow)=Σ WSSi(tnow)   for i=1,...,p
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9.8 Working Set

If the number of frames is n, then

a. If D > n , the system is thrashing.

b. If D < n, the system is all right, the degree of 
multiprogramming can possibly be increased.

If D > n at any time instant, OS selects a process to 
suspend for a while. The frames that were used by the 
selected process are reallocated to other processes.
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9.8 Working Set

Example: Assume T = 10 , and consider the reference 
string given below, on which the window is shown at 
different time instants. Find the working sets at these 
time instants.
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9.8 Working Set

Example:

Answer will be:

WS(t1) = {2,1,5,7}

WS(t2) = {7,5,1,3,4}

WS(t3) = {3,4}

So, WS size of this process have been 5 at most.
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