
1

OPERATING SYSTEMS

THREADS

Each process has its address space and starts with a 
single thread. Nevertheless, multiple threads run in the 
same address space in the same process, as if they 
were separate processes. 

Why would anyone want to have a kind of process 
within a process? There are several reasons for having 
these miniprocesses, called threads.

2

3 Threads

The main reason for having threads is that multiple 
activities are going on at once. To become simpler the 
programming model, an application is decomposed 
into multiple sequential threads that run in quasi-
parallel. 

With threads, we add only a new element: the ability 
for the parallel entities to share an address space 
and all of its data among themselves.

3

3.1 Thread Usage

The second advantage is that threads are easier to 
create and destroy than processes. In many systems, 
creating a thread goes 10-100 times faster than 
creating a process.

A third reason is performance. Threads can yield 
performance gain when there is substantial computing 
and also substantial I/O, having threads allows these 
activities to overlap, thus speeding up the application. 
Finally, threads may supply real parallelism.

4

3.1 Thread Usage

Suppose that the user suddenly deletes one sentence 
from page 1 of an 800-page document. Then to 
make another change, he types a command to go to 
page 600. The word processor is now forced to 
reformat the entire book up to page 600 on the spot 
because it does not know what the first line of page 
600 will be until it has processed all the previous 
pages. There may be a sizeable delay before page 
600 can be displayed, leading to an unhappy user.

5

3.1 Thread Usage

For the word processor is written as a two-threaded 
program, one thread interacts with the user and the 
other handles reformatting in the background. As soon 
as the sentence is deleted from page 1, the interactive 
thread tells the reformatting thread to run the whole 
book. Meanwhile, the interactive thread continues to 
listen to the input devices and responds to simple 
commands like scrolling page 1 while the other thread 
is computing madly in the background. If the 
reformatting is completed before the request to see 
page 600, it can be displayed without delay.

6

3.1 Thread Usage



2

Many word processors have a feature of automatic 
saving the entire file to disk every few minutes to 
protect the data. The third thread can handle the disk 
backups without interfering with the other two.

7

3.1 Thread Usage

If the program were single-threaded, then whenever 
a disk backup started, commands from the keyboard 
and mouse would be ignored until the backup was 
finished. The user would suppose the system as slow
performance. Alternatively, keyboard and mouse 
events could interrupt the disk backup, allowing good 
performance but leading to a complex interrupt-
driven programming model. With three threads, the 
programming model is much simpler.

8

3.1 Thread Usage

It should be clear that having three separate 
processes would not work here because all three 
threads need to operate on the document. By having 
three threads instead of three processes, they share a 
common memory and thus all have access to the same 
document being edited.

9

3.1 Thread Usage

Now consider a web server. Requests for pages come 
in and the requested page is sent back. Some pages 
are more commonly accessed than others. e.g., 
Samsung's home page is accessed far more than a 
page containing the technical specifications of any 
particular camcorder. Web servers use this fact to 
improve performance by maintaining a collection of 
heavily used pages in main memory. Such a collection 
is called a cache.

10

3.1 Thread Usage

In figure, one thread (the dispatcher) reads incoming 
requests for work from the network. After examining 
the request, it chooses an idle worker thread and 
hands it the request. The dispatcher then moves 
sleeping worker from blocked state to ready state.

11

3.1 Thread Usage

When the worker wakes up, it checks if the request 
can be satisfied from the cache. If not, it starts a read 
operation to get the page from the disk and blocks 
until the disk operation completes. When the thread 
blocks on the disk operation, another thread is chosen 
to run, possibly the dispatcher, in order to acquire 
more work, or possibly another worker that is now 
ready to run.

12

3.1 Thread Usage



3

A rough outline of the code is given in figure. Here, 
TRUE is assumed to be the constant 1. Also, buf and 
page are structures appropriate for holding a work 
request and a web page, respectively.

13

3.1 Thread Usage

Consider how the Web server could be written in the 
absence of threads or with only a single thread. The 
main loop of the Web server gets a request, examines 
it, and carries it out to completion before getting the 
next one. While waiting for the disk, the server is idle 
and does not process any other incoming requests. If 
the Web server is running on a dedicated machine, 
the CPU is simply idle while the Web server is Waiting 
for the disk. The net result is that many fewer 
requests/sec can be processed. Thus threads gain 
considerable performance.

14

3.1 Thread Usage

So far we have seen two possible designs: a 
multithreaded and a single-threaded Web server. 
Suppose that threads are not available but the system 
designers find the performance loss due to single 
threading unacceptable. If a nonblocking version of 
the read system call is available, a third approach is 
possible. When a request comes in, the one and only 
thread examines it. If it can be satisfied from the 
cache, fine, but if not, a nonblocking disk operation is 
started.

15

3.1 Thread Usage

The server records the state of the current request in a 
table and then goes and gets the next event. The next 
event may either be a request for new work or a 
reply from the disk about a previous operation. If it is 
new work, that work is started. If it is a reply from the 
disk, the relevant information is fetched from the table 
and the reply processed. With nonblocking disk I/O, a 
reply probably will have to take the form of a signal 
or interrupt.

16

3.1 Thread Usage

In this design, the "sequential process" model that we 
had in the first two cases is lost. The state of the 
computation must be explicitly saved and restored in 
the table every time the server switches from working 
on one request to another. In effect, we are simulating 
the threads and their stacks the hard way. A design 
like this, in which each computation has a saved state, 
and there exists some set of events that can occur to 
change the state is called a finite-state machine. This 
concept is widely used throughout computer science.

17

3.1 Thread Usage

A third example is applications used very large 
amounts of data. The normal approach is to read in a 
block of data, process it, and then write it out again. 
The problem here is that if only blocking system calls 
are available, the process blocks while data are 
coming in and data are going out. Having the CPU go 
idle when there is lots of computing to do is clearly 
wasteful and should be avoided if possible.

18

3.1 Thread Usage



4

Threads offer a solution. The process could be 
structured with an input thread, a processing thread, 
and an output thread. The input thread reads data 
into an input buffer. The processing thread takes data 
out of the input buffer, processes them, and puts the 
results in an output buffer. The output buffer writes 
these results back to disk. In this way, input, output, 
and processing can all be going on at the same time. 
Of course, this model only works if a system call 
blocks only the calling thread, not the entire process.

19

3.1 Thread Usage

One important concepts in the process model is a 
thread of execution. The thread has a program 
counter that follows which instruction to execute next. It 
has registers, which hold its current working variables. 
It has a stack, which contains the execution history, 
with one frame for each procedure called but not yet 
returned from. Although a thread must execute in 
some process, the thread and its process are different 
concepts and can be treated separately. Processes 
are used to group resources together; threads are the 
entities scheduled for execution on the CPU.

20

3.2 The Classical Thread Model

What threads add to the process model is to allow 
multiple executions to take place in the same process 
environment. Having multiple threads running in 
parallel in one process is similar to having multiple 
processes running in parallel in one computer. While 
the threads share an address space and other 
resources, processes share physical memory, disks, 
printers, and other resources. Because threads have 
some of the properties of processes, they are 
sometimes called lightweight processes.

21

3.2 The Classical Thread Model

In figure (a) we see three traditional processes. Each process has 
its own address space and a single thread of control. In contrast, 
in figure (b) we see a single process with three threads of control. 
Although in both cases we have three threads, in figure (a) each 
of them operates in a different address space, whereas in figure 
(b) all three of them share the same address space.

22

3.2 The Classical Thread Model

(a) Three processes each with one thread. (b) One process with three threads.

When a multithreaded process is run on a single-CPU 
system, the threads take turns running. By switching 
back and forth among multiple processes, the system 
gives the illusion of separate sequential processes 
running in parallel. Multithreading works the same 
way. With three compute-bound threads in a process, 
the threads would appear to be running in parallel, 
each one on a CPU with one-third the speed of the 
real CPU.

23

3.2 The Classical Thread Model

Different threads are not as independent as different 
processes. All threads have the same address space, 
set of open files, child processes, alarms, and signals. 
Since every thread can access every memory address 
within the process' address space, one thread can 
read, write, or even destroy another thread's stack. 
There is no protection between threads because (1) it 
is impossible, and (2) it should not be necessary. A 
process is always owned by a single user, who has 
created multiple threads so that they can cooperate, 
not fight.

24

3.2 The Classical Thread Model



5

The first column lists some items shared by all threads 
in a process. The second one lists some items private to 
each thread.

25

3.2 The Classical Thread Model

Like a process with only one thread, a thread can be 
in any one of several states: running, blocked, ready, 
or terminated. A running thread currently has the CPU 
and is active. A blocked thread is waiting for some 
event to unblock it. For example, when a thread 
performs a system call to read from the keyboard, it 
is blocked until input is typed. A thread can block 
waiting for some external event to happen or for 
some other thread to unblock it. A ready thread is 
scheduled to run and will as soon as its turn comes up.

26

3.2 The Classical Thread Model

It is important to realize that each thread has its own 
stack, as illustrated in figure below. Each thread's stack 
contains one frame for each procedure called but not 
yet returned from. This frame contains the procedure's 
local variables and the return address to use when the 
procedure call has finished.

27

3.2 The Classical Thread Model

When multithreading is present, processes normally 
start with a single thread. This thread has the ability 
to create new threads by calling a library procedure, 
for example, thread_create. A parameter to 
thread_create specifies the name of a procedure to 
run. It is not possible to specify anything about the 
new thread's address space, since it automatically runs 
in the address space of the creating thread. 
Sometimes threads are hierarchical, with a parent-
child relationship, but often no such relationship exists, 
with all threads being equal.

28

3.2 The Classical Thread Model

When a thread has finished its work, it can exit by 
calling a library procedure, say, thread_exit. It then 
disappears and is no longer schedulable. In some 
thread systems, one thread can wait for a specific 
thread to exit by calling a procedure, for example, 
thread_join. This procedure blocks the calling thread 
until a specific thread has exited. In this regard, 
thread creation and termination is very much like 
process creation and termination, with the same 
options as well.

29

3.2 The Classical Thread Model

Another common thread call, thread_yield, allows a 
thread to voluntarily give up the CPU to let another 
thread run. Such a call is important because there is 
no interrupt to enforce multiprogramming as there is 
with processes. Thus it is important for threads to be 
polite and voluntarily abandon the CPU from time to 
time to give other threads a chance to run. Other calls 
allow one thread to wait for another thread to finish 
some work, for a thread to announce that it has 
finished some work.

30

3.2 The Classical Thread Model



6

Besides threads introduce a number of problems into 
the programming model. To start with, consider the 
effects of the fork system call. 

� If the parent process has multiple threads, should the child also 
have them? If not, the process may not work properly, since all 
of them may be essential. However, if the child process gets as 
many threads as the parent, what happens if a thread in the 
parent was blocked on a read call, say, from the keyboard? 
Are two threads now blocked on the keyboard, one in the 
parent and one in the child? When a line is typed, do both 
threads get a copy of it? Only the parent? Only the child?

31

3.2 The Classical Thread Model

Another class of problems is related to the fact that 
threads share many data structures. 

� What happens if one thread closes a file while another one is 
still reading from it? Suppose that one thread notices that 
there is too little memory and starts allocating more memory. 
Just then, a thread switch occurs, and the new thread also 
notices that there is too little memory and also starts allocating 
more memory. Memory will probably be allocated twice. 
These problems can be solved with some effort, but careful 
thought and design are needed to make multithreaded 
programs work correctly.

32

3.2 The Classical Thread Model

IEEE has defined a standard (IEEE1003.1c) for threads 
to write portable threaded programs. The threads 
package is called Pthreads. Most UNIX systems 
support it. The standard defines over 60 function calls. 
Instead we will just describe a few of the major ones 
to give an idea of how it works. 

33

3.3 POSIX Threads

The calls we will describe are listed as follow.

34

3.3 POSIX Threads

Thread call Description

Pthread_create Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_yield Release the CPU to let another 
thread run

Pthread_attr_init Create and initialize a thread's 
attribute structure

Pthread_attr_destroy Remove a thread's attribute structure

3.3 POSIX Threads
35

#include <stdio.h>

#include <sys/syscall.h>

#include <pthread.h>

void *myID()

{

printf(“I am a thread.”); 

}

main() 

{

pthread_t   thred;

int th_no;

th_no = pthread_create(&thred, NULL, myID, NULL)

pthread_exit(&thred);

}

There are two main ways to implement a threads 
package: in user space and in the kernel. The first 
method is to put the threads package entirely in user 
space. The kernel knows nothing about them. The most 
obvious advantage is that a user-level threads 
package can be implemented on an operating system 
that does not support threads. With this approach, 
threads are implemented by a library. 

36

3.4 Implementing in User Space



7

All of these implementations have the same general 
structure, which is illustrated in figure. 

37

3.4 Implementing in User Space

(a) A user-level threads package. (b) A threads package managed by the kernel.

The threads run on top of a run-time system, which is 
a collection of procedures that manage threads. We 
have seen four of these already: pthread_create, 
pthread_exit, pthread_join, and pthread_yield.

38

3.4 Implementing in User Space

(a) A user-level threads package. (b) A threads package managed by the kernel.

When threads are managed in user space, each 
process needs its own private thread table to keep 
track of them. This table is similar to the kernel's 
process table, except that it keeps track only of the 
per-thread properties, such as each thread's program 
counter, stack pointer, registers, state, and so forth. 
The thread table is managed by the run-time system. 
When a thread is moved to ready state or blocked 
state, the information needed to restart it is stored in 
the thread table, exactly the same way as ones in the 
process table.

39

3.4 Implementing in User Space

When a thread does something that may cause it to 
become blocked locally, it calls a run-time system 
procedure. This procedure checks that if the thread is 
in blocked state. If so, it stores the its own registers in 
the thread table, looks in the table for a ready thread 
to run, and reloads the machine registers with the new 
thread's saved values. As soon as the stack pointer 
and program counter have been switched, the new 
thread comes to life again automatically.

40

3.4 Implementing in User Space

However, there is one key difference with processes. 
When a thread calls thread_yield, the code of 
thread_yield can save the thread's information in the 
thread table itself. Then it can call the thread 
scheduler to pick another thread to run. The 
procedure that saves the thread's state and the 
scheduler are just local procedures, so invoking them is 
much more efficient than making a kernel call. Among 
other issues, no trap is needed, no context switch is 
needed, the memory cache need not be flushed, and 
so on. This makes thread scheduling very fast.

41

3.4 Implementing in User Space

Besides, user-level threads allow each process to have 
its own customized scheduling algorithm. For some 
applications, for example, those with a garbage 
collector thread, not having to worry about a thread 
being stopped at an inconvenient moment is a plus. 
They also scale better, since kernel threads always 
require some table space and stack (space in the 
kernel which can be a problem if there are a very 
large number of threads).

42

3.4 Implementing in User Space



8

Despite their better performance, user-level threads 
packages have some major problems. First among 
these is the problem of how blocking system calls are 
implemented. Suppose that a thread reads from the 
keyboard. Letting the thread make the system call is 
unacceptable, since this will stop all the threads. One 
of the main goals was to allow each one to use 
blocking calls, but to prevent one blocked thread from 
affecting the others. With blocking system calls, it is 
hard to see how this goal can be achieved.

43

3.4 Implementing in User Space

The system calls could all be changed to be 
nonblocking (e.g., a read on the keyboard would just 
return 0 bytes if no characters were already 
buffered), but requiring changes to the operating 
system is unattractive. Besides, one of the arguments 
for user-level threads was precisely that they could 
run with existing operating systems. In addition, 
changing the semantics of read will require changes 
to many user programs.

44

3.4 Implementing in User Space

Somewhat analogous to the problem of blocking 
system calls is the problem of page faults. Briefly, 
computers may not load all of a program in main 
memory at once. If the program jumps to an instruction 
that is not in memory, a page fault occurs and the 
operating system will get the missing instruction from 
disk. This is called a page fault. The process is 
blocked while the necessary instruction is being 
located. If a thread causes a page fault, the kernel 
naturally blocks the entire process until the disk I/O is 
complete, even though other threads maybe runnable.

45

3.4 Implementing in User Space

Another problem with user-level thread packages is 
that if a thread starts running, no other thread in that 
process will ever run unless the first thread voluntarily 
gives up the CPU. Within a single process, there are 
no clock interrupts, making it impossible to schedule 
processes round-robin fashion (taking turns). Unless a 
thread enters the run-time system of its own free will, 
the scheduler will never get a chance.

46

3.4 Implementing in User Space

One possible solution to the problem of threads 
running forever is to have the run-time system request 
a clock signal (interrupt) once a second to give it 
control, but this, too, is crude and messy to program. 
Periodic clock interrupts at a higher frequency are not 
always possible, and even if they are, the total 
overhead may be substantial. Furthermore, a thread 
might also need a clock interrupt, interfering with the 
run-time system's use of the clock.

47

3.4 Implementing in User Space

Another, and really the most destroying, argument 
against user-level threads is that programmers 
generally want threads precisely in applications 
where the threads block often. These threads are 
constantly making system calls. Once a trap has 
occurred to the kernel to carry out the system call, it is 
hardly any more work for the kernel to switch threads 
if the old one has blocked, and having the kernel do 
this eliminates the need for constantly making select 
system calls that check to see if read system calls are 
safe.

48

3.4 Implementing in User Space



9

Now let us consider having the kernel know about and 
manage the threads. No run-time system is needed in 
each. Also, there is no thread table in each process. 
Instead, the kernel has a thread table that keeps 
track of all the threads in the system. When a thread 
wants to create a new thread or destroy an existing 
thread, it makes a kernel call, which then does the 
creation or destruction by updating the kernel thread 
table.

49

3.5 Implementing in the Kernel

The kernel's thread table holds each thread's 
registers, state, and other information. The information 
is the same as with user-level threads, but now kept in 
the kernel instead of in user space (inside the run-time 
system). This information is a subset of the information 
that traditional kernels maintain about their single 
threaded processes, that is, the process state. In 
addition, the kernel also maintains the traditional 
process table to keep track of processes.

50

3.5 Implementing in the Kernel

All calls that might block a thread are implemented as 
system calls, at considerably greater cost than a call 
to a run-time system procedure. When a thread 
blocks, the kernel can run either another thread in 
ready from the same process or a thread from a 
different process. With user-level threads, the run-time 
system keeps running threads from its own process 
until the kernel takes the CPU away from it (or there 
are no ready threads left to run). 

51

3.5 Implementing in the Kernel

Due to the relatively greater cost of creating and 
destroying threads in the kernel, some systems take an 
environmentally correct approach and recycle their 
threads. When a thread is destroyed, it is marked as 
not runnable, but its kernel data structures are not 
otherwise affected. Later, when a new thread must be 
created, an old thread is reactivated, saving some 
overhead. Thread recycling is also possible for user-
level threads, but since the thread management 
overhead is much smaller, there is less incentive to do 
this.

52

3.5 Implementing in the Kernel

Kernel threads do not require any new, nonblocking
system calls. In addition, if one thread in a process 
causes a page fault, the kernel can easily check to 
see if the process has any other runnable threads, and 
if so, run one of them while waiting for the required 
page to be brought in from the disk. Their main 
disadvantage is that the cost of a system call is 
substantial, so if thread operations (creation, 
termination, etc.) are common, much more overhead 
will be incurred.

53

3.5 Implementing in the Kernel

While kernel threads solve some problems, they do 
not solve all problems. For example, what happens 
when a multithreaded process forks? Does the new 
process have as many threads as the old one did, or 
does it have just one? In many cases, the best choice 
depends on what the process is planning to do next. If 
it is going to call exec to start a new program, 
probably one thread is the correct choice, but if it 
continues to execute, reproducing all the threads is 
probably the right thing to do.

54

3.5 Implementing in the Kernel



10

Another issue is signals. Remember that signals are 
sent to processes, not to threads, at least in the 
classical model. When a signal comes in, which thread 
should handle it? Possibly threads could register their 
interest in certain signals, so when a signal came in it 
would be given to the thread that said it wants it. But 
what happens if two or more threads register for the 
same signal. These are only two of the problems 
threads introduce, but there are more.

55

3.5 Implementing in the Kernel

To combine the advantages of user-level threads with 
kernel-level threads, one way is use kernel-level 
threads and then multiplex user-level threads onto 
some or all of the kernel threads as shown in figure. 

56

3.6 Hybrid Implementations

Multiplexing user-level threads onto kernel-level threads.

When this approach is used, the programmer can 
determine how many kernel threads to use and how 
many user-level threads to multiplex on each one.

57

3.6 Hybrid Implementations

Multiplexing user-level threads onto kernel-level threads.

With this approach, the kernel is aware of only the 
kernel-level threads and schedules those. Some of 
those threads may have multiple user-level threads 
multiplexed on top of them. These user-level threads 
are created, destroyed, and scheduled just like user-
level threads in a process that runs on an operating 
system without multithreading capability. In this model, 
each kernel-level thread has some set of user-level 
threads that take turns using it.

58

3.6 Hybrid Implementations

Although kernel threads are better than user-level 
threads in some key ways, they are slower. The goals 
of the scheduler activation work are to mimic the 
functionality of kernel threads, but with the better 
performance and greater flexibility in user space. 
Efficiency is achieved by avoiding unnecessary 
transitions between user and kernel space.

59

3.7 Scheduler Activations

When a hardware interrupt occurs while a user thread 
is running, the CPU switches into kernel mode. When 
the interrupt handler has finished, if the process is not 
interested in the interrupt, it puts the interrupted 
thread back in its before state; but if the process is 
interested in the interrupt, the interrupted thread is 
not restarted. Instead, the run-time system is started 
on that virtual CPU, with the state of the interrupted 
thread. It is then up to the run-time system to decide 
which thread to schedule on that CPU: the interrupted 
one, the newly ready one, or some third choice.

60

3.7 Scheduler Activations



11

Threads are frequently useful in distributed systems. 
An important example is how incoming messages, for 
example requests for service, are handled. The 
traditional approach is to have a process or thread 
that is blocked on a receive system call waiting for an 
incoming message. When a message arrives, it 
accepts the message and processes it. However, a 
completely different approach is also possible, in 
which the arrival of a message causes the system to 
create a new thread to handle the message. 

61

3.8 Pop-Up Threads

Such a thread is called a pop-up thread and is 
illustrated in figure. 

62

3.8 Pop-Up Threads

Creation of a new thread when a message arrives. (a) Before the message arrives. 

(b) After the message arrives.

A key advantage of pop-up threads is that since they 
are brand new, they don’t have any history (registers, 
stack, etc.). This makes it possible to create such a 
thread quickly. The new thread is given the incoming 
message to process. The result of using pop-up 
threads is that the latency between message arrival 
and the start of processing can be made very short.

63

3.8 Pop-Up Threads

Converting programs written as a single-threaded to 
multithreading requires some tricks. As a start, the 
code of a thread normally consists of multiple 
procedures, just like a process. These may have local 
variables, global variables, and parameters. Local 
variables and parameters do not cause any trouble, 
but variables that are global to a thread but not 
global to the entire program are a problem. These 
are variables that are global in the sense that many 
procedures within the thread use them, but other 
threads should logically leave them alone.

64

3.9 Single-Thread to Multithread

65

3.9 Single-Thread to Multithread

Conflicts between threads over the use of a global variable

In figure, Thread1 executes the system call access to 
find out if it has permission to access a certain file. 
The operating system returns the answer in the global 
variable errno. After control has returned to Thread1, 
but before it has a chance to read errno, the 
scheduler decides that Thread1 has had enough CPU 
time for the moment and decides to switch to Thread2. 
Thread2 executes an open call that fails, which causes 
errno to be overwritten and Thread1's access code to 
be lost forever. When Thread1 starts up later, it will 
read the wrong value and behave incorrectly.

66

3.9 Single-Thread to Multithread



12

The next problem is that many library procedures are 
not reentrant. That is, they were not designed

to have a second call made to any given procedure 
while a previous call has not yet finished. 

Similarly, memory allocation procedures maintain 
crucial tables about memory usage. If a thread switch 
occurs while the tables are inconsistent and a new call 
comes in from a different thread, an invalid pointer 
may be used, leading to a program crash.

67

3.9 Single-Thread to Multithread

Next, consider signals. Some signals are logically 
thread specific, whereas others are not. For example, 
if a thread calls alarm, it makes sense for the resulting 
signal to go to the thread that made the call. 
However, when threads are implemented entirely in 
user space, the kernel does not even know about 
threads and can hardly direct the signal to the right 
one. 

68

3.9 Single-Thread to Multithread

One last problem introduced by threads is stack 
management. In many systems, when a process' stack 
overflows, the kernel just provides that process with 
more stack automatically. When a process has 
multiple threads, it must also have multiple stacks. If 
the kernel is not aware of all these stacks, it cannot 
grow them automatically upon stack fault.

69

3.9 Single-Thread to Multithread


