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OPERATING SYSTEMS

INTERPROCESS 
COMMUNICATION

Processes frequently need to communicate with other 
processes. For example, in a shell pipeline, the output 
of the first process must be passed to the second 
process, and so on down the line. Thus there is a need 
for communication between processes, preferably in a 
well-structured way not using interrupts. In this week, 
we will look at some of the issues related to this 
Interprocess Communication (IPC).
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4 Interprocess Communication

Briefly, there are three issues here. 

� How one process can pass information to another. 

�Making sure two or more processes do not get in 
each other's way. 

� Proper sequencing when dependencies are 
present.
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4 Interprocess Communication

In some operating systems, processes that are working 
together may share some common storage that each 
one can read and write. To see how IPC works in 
practice, let us consider a simple example: a print 
spooler. When a process wants to print a file, it enters 
the file name in a special spooler directory. Another 
process, the printer daemon, periodically checks to 
see if there are any files to be printed, and if there 
are, it prints them and then removes their names from 
the directory.
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4.1Race Conditions

Imagine that our spooler directory has a very large 
number of slots, numbered 0, 1, 2, .. " each one 
capable of holding a file name. Also imagine that 
there are two shared variables (out and in) which 
points to the next file to be printed, and to the next 
free slot in the directory, respectively. These variables 
might well be kept on a two-word file available to all 
processes. At a certain instant, slots 0 to 3 are empty 
(the files have already been printed) and slots 4 to 6 
are full. More or less simultaneously, processes A and 
B decide they want to queue a file for printing.
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4.1Race Conditions
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4.1Race Conditions

Two processes want to access shared memory at same time
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Process A reads "in" and stores the value, 7, in a local 
variable called next_free_slot. Just then a clock 
interrupt occurs and the CPU decides that process A 
has run long enough, so it switches to process B. 
Process B also reads in, and also gets a 7. It too stores 
it in its local variable next_free_slot. At this instant 
both processes think that the next available slot is 7. 
Process B now continues to run. It stores the name of its 
file in slot 7 and updates in to be an 8. 
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4.1Race Conditions

Process A runs again, starting from the place it left 
off. It writes its file name in slot 7, erasing the name 
that process B just put there. Then it sets “in” to 8. The 
spooler directory is now internally consistent, so the 
printer daemon will not notice anything wrong, but 
process B will never receive any output. Situations like 
this, where two or more processes are reading or 
writing some shared data and the final result depends 

on who runs precisely when, are called 

race conditions. 
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4.1Race Conditions

Sometimes a process has to access shared memory or 
files, or do other critical things that can lead to races. 
That part of the program where the shared memory is 
accessed is called the critical region.

How do we avoid race conditions? Mutual exclusion
is a solution which describes some way of making sure 
that if one process is using a shared data, the other 
processes will be excluded from doing the same thing. 
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4.2 Critical Regions

Four conditions to provide mutual exclusion:

1. No two processes simultaneously in critical region

2. No assumptions made about speeds or numbers of 
CPUs

3. No process running outside its critical region may 
block another process

4. No process must wait forever to enter its critical 
region
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4.2 Critical Regions
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4.2 Critical Regions

Mutual exclusion using critical regions

In this section we will examine various proposals for 
achieving mutual exclusion, so that while one process is 
busy updating shared memory in its critical region, no 
other process will enter its critical region and cause 
trouble.
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4.3 Mutual Exclusion
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On a single-processor system, the simplest solution is 
to have each process disable all interrupts just after 
entering its critical region and re-enable them just 
before leaving it. With interrupts disabled, no clock 
interrupts can occur. The CPU is only switched from 
process to process as a result of clock or other 
interrupts, after all, and with interrupts turned off the 
CPU will not be switched to another process. Thus, 
once a process has disabled interrupts, it can examine 
and update the shared memory without fear that any 
other process will intervene.
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4.3.1 Disabling Interrupts

This approach is generally unattractive because it is 
unwise to give user processes the power to turn off 
interrupts. Suppose that one of them did it, and never 
turned them on again? That could be the end of the 
system. Furthermore, if the system is a multiprocessor 
(with two or possibly more CPUs) disabling interrupts 
affects only the CPU that executed the disable 
instruction. The other ones will continue running and 
can access the shared memory.

14

4.3.1 Disabling Interrupts

On the other hand, it is frequently convenient for the 
kernel itself to disable interrupts for a few instructions 
while it is updating variables or lists. If an interrupt 
occurred while the list of ready processes, for 
example, was in an inconsistent state, race conditions 
could occur. The conclusion is: disabling interrupts is 
often a useful technique within the operating system 
itself but is not appropriate as a general mutual 
exclusion mechanism for user processes.
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4.3.1 Disabling Interrupts

The possibility of achieving mutual exclusion by 
disabling interrupts -even within the kernel- is 
becoming less every day due to the increasing number 
of multi core chips even in low-end PCs. Two cores are 
already common, four are present in high-end 
machines, and eight or 16 are not far behind. In a 
multiprocessor system, disabling the interrupts of one 
CPU does not prevent other CPUs from interfering 
with operations the first CPU is performing. 
Consequently, more sophisticated schemes are 
needed.
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4.3.1 Disabling Interrupts

As a second attempt, let us look for a software 
solution. Consider having a single, shared (lock) 
variable, initially O. When a process wants to enter its 
critical region, it first tests the lock. If the lock is 0, the 
process sets it to 1 and enters the critical region. If the 
lock is already 1, the process just waits until it 
becomes O. Thus, a 0 means that no process is in its 
critical region, and a 1 means that some process is in 
its critical region.
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4.3.2 Lock Variables

Unfortunately, this idea contains exactly the same 
fatal flaw that we saw in the spooler directory. 
Suppose that one process reads the lock and sees that 
it is O. Before it can set the lock to I, another process 
is scheduled, runs, and sets the lock to 1. When the 
first process runs again, it will also set the lock to I, 
and two processes will be in their critical regions at 
the same time.
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4.3.2 Lock Variables
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Now you might think that we could get around this 
problem by first reading out the lock value, then 
checking it again just before storing into it, but that 
really does not help. The race now occurs if the 
second process modifies the lock just after the first 
process has finished its second check.

19

4.3.2 Lock Variables

A third approach to the mutual exclusion problem is 
shown in figure.
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4.3.3 Strict Alternation

(a) Process 0.       (b) Process 1.

In figure, the integer variable “turn” keeps track of 
whose turn it is to enter the critical region. Initially, 
Process0 inspects “turn”, finds it to be 0, and enters its 
critical region. Process1 also finds it to be 0 and 
therefore sits in a tight loop continually testing turn to 
see when it becomes 1. Continuously testing a 
variable until some value appears is called busy 
waiting. It should usually be avoided, since it wastes 
CPU time. Only when the wait will be short, using busy 
waiting may be reasonable. A lock that uses busy 
waiting is called a spin lock.
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4.3.3 Strict Alternation

When Process0 leaves the critical region, it sets “turn” 
to 1, to allow Process1 to enter its critical region. 
Suppose that Process1 finishes its critical region 
quickly, so that both processes are in their noncritical 
regions, with “turn” set to 0. Now Process0 executes its 
whole loop quickly, exiting its critical region and 
setting “turn” to 1. At this point “turn” is 1 and both 
processes are executing in their noncritical regions.
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4.3.3 Strict Alternation

Suddenly, Process0 finishes its noncritical region and 
goes back to the top of its loop. Unfortunately, it is not 
permitted to enter its critical region now, because 
“turn” is 1 and Process1 is busy with its noncritical 
region. It hangs in its while loop until Process1 sets 
“turn” to 0. Put differently, taking turns is not a good 
idea when one of the processes is much slower than 
the other. This algorithm can not be a solution because 
it violates condition 3.
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4.3.3 Strict Alternation

By combining the idea of taking turns with the idea of 
lock variables and warning variables, Peterson 
discovered a much simpler way to achieve mutual 
exclusion in 1981. Before entering the critical region, 
each process calls "enter_region" with its own process 
number, 0 or 1, as parameter. This call will cause it to 
wait, if need be, until it is safe to enter. After it has 
finished with the shared variables, the process calls 
"leave_region" to indicate that it is done and to allow 
the other process to enter, if it so desires.
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4.3.4 Peterson's Solution
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4.3.4 Peterson's Solution

Initially neither process is in its critical region. Now 
process 0 calls "enter_region". It indicates its interest 
by setting its array element and sets "turn" to 0. Since 
Process1 is not interested, "enter_region" returns 
immediately. If Process1 now makes a call to 
"enter_region", it will hang there until "interested[0]" 
goes to FALSE, an event that only happens when 
Process0 calls "leave_region" to exit the critical 
region.
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4.3.4 Peterson's Solution

Now consider the case that both processes call 
"enter_region" almost simultaneously. Both will store 
their process number in "turn". Whichever store is 
done last is the one that counts; the first one is 
overwritten and lost. Suppose that Process1 stores 
last, so "turn" is 1. When both processes come to the 
while statement, Process0 executes it zero times and 
enters its critical region. Process1 loops and does not 
enter its critical region until Process0 exits its critical 
region.

27

4.3.4 Peterson's Solution

Some computers, especially those designed with 
multiple processors in mind, have an instruction like TSL 
(Test and Set Lock). It reads the contents of the 
memory word lock into register RX and then stores a 
nonzero value at the memory address lock. The 
operations of reading the word and storing into it are 
guaranteed to be indivisible (no other processor can 
access the memory word until the instruction is 
finished). The CPU executing the TSL instruction locks 
the memory bus to prohibit other CPUs from accessing 
memory until it is done.
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4.3.5 The TSL Instruction
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4.3.5 The TSL Instruction

Entering and leaving a critical region using the TSL instruction

It is important to note that locking the memory bus is 
very different from disabling interrupts. Disabling 
interrupts then performing a read on a memory word 
followed by a write does not prevent a second 
processor on the bus from accessing the word between 
the read and the write. In fact, disabling interrupts on 
processor 1 has no effect at all on processor 2. The 
only way to keep processor 2 out of the memory until 
processor 1 is finished is to lock the bus, which 
requires a special hardware system.
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4.3.5 The TSL Instruction
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To use the TSL instruction, we will use a shared 
variable ("lock") to coordinate access to shared 
memory. When "lock" is 0, any process may set it to 1 
using the TSL instruction and then read or write the 
shared memory. When it is done, the process sets 
"lock" back to 0 using an ordinary move instruction.
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4.3.5 The TSL Instruction

To prevent two processes from simultaneously entering 
their critical regions, there are four-instruction 
subroutines. The first instruction copies the old value of 
"lock" to the register and then sets "lock" to 1. Then 
the old value is compared with 0. If it is nonzero, the 
lock was already set, so the program just goes back 
to the beginning and tests it again. When the process 
is done with its critical region, it will become 0, and 
the subroutine returns, with the lock set. For clearing 
the lock, the program just stores a 0 in "lock".
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4.3.5 The TSL Instruction

Both Peterson's solution and the solutions using TSL are 
correct, but both have the defect of requiring busy 
waiting. In essence, what these solutions do is this: 
when a process wants to enter its critical region, it 
checks to see if the entry is allowed. If it is not, the 
process just sits in a tight loop waiting until it is. Not 
only does this approach waste CPU time, but it can 
also have unexpected effects. 

33

4.4 Sleep and Wakeup

Consider a computer with two processes, H, with high 
priority, and L, with low priority. The scheduling rules 
are such that H is run whenever it is in ready state. At 
a certain moment, with L in its critical region, H 
becomes ready to run (e.g., an I/O operation 
completes). H now begins busy waiting, but since L is 
never scheduled while H is running, L never gets the 
chance to leave its critical region, so H loops forever. 
This situation is sometimes referred to as the priority 
inversion problem.
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4.4 Sleep and Wakeup

Now let us look at some interprocess communication 
primitives that block instead of wasting CPU time 
when they are not allowed to enter their critical 
regions. One of the simplest is the pair "sleep" and 
"wakeup". "Sleep" is a system call that causes the 
caller to block, that is, be suspended until another 
process wakes it up. "Wakeup" call has one 
parameter, the process to be awakened.
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4.4 Sleep and Wakeup

Let us use these primitives in an example of the 
producer-consumer problem. Two processes share a 
fixed-size buffer. One of them, the producer, puts 
data into the buffer, and the other one, the consumer, 
takes it out. Trouble arises when the producer wants to 
put a new item in the buffer, but it is already full. The 
solution is for the producer to go to sleep, to be 
awakened when the consumer has removed an item. If 
the consumer wants to remove an item from the buffer 
when the buffer is empty, it goes to sleep until the 
producer puts something in the buffer and wakes it up.
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4.4 Sleep and Wakeup
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This approach may lead to the same kinds of race 
conditions. To keep track of the number of items in the 
buffer, we will use a variable, count. If the maximum 
number of items the buffer can hold is N, producer's 
code will first test to see if count is N. If it is not, the 
producer will add an item and increment count; if it is, 
producer will go to sleep. Consumer's code is similar: 
first test count to see if it is 0. If it is, go to sleep; if it 
is nonzero, remove an item and decrement the counter. 
Each of the processes also tests to see if the other 
should be awakened, and if so, wakes it up.
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4.4 Sleep and Wakeup
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4.4 Sleep and Wakeup

A race condition can occur because access to count is 
unconstrained; e.g. the buffer is empty and the 
consumer has just read count to see if it is 0. At that 
instant, the scheduler decides to stop running the 
consumer temporarily and start running the producer. 
The producer inserts an item in the buffer, increments 
count, and notices that it is now 1. Reasoning that 
count was just 0, and thus the consumer must be 
sleeping, the producer calls wakeup to wake the 
consumer up.
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4.4 Sleep and Wakeup

Unfortunately, the consumer is not yet logically asleep, 
so the wakeup signal is lost. When the consumer next 
runs, it will test the value of count it previously read, 
find it to be 0, and go to sleep. Sooner or later the 
producer will fill up the buffer and also go to sleep. 
Both will sleep forever. Let us try to fix by a wakeup 
waiting bit. When a wakeup is sent to a process that 
is still awake, this bit is set. Later, when the process 
tries to go to sleep, if the wakeup waiting bit is on, it 
will be turned off, but the process will stay awake. 
One (or more) wakeup waiting bit does not work.
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4.4 Sleep and Wakeup

This was the situation in 1965, when Dijkstra
suggested using an integer variable to count the 
number of wakeups saved for future use. In his 
proposal, a new variable type, which he called a 
semaphore, was introduced. A semaphore could have 
the value 0, indicating that no wakeups were saved, 
or some positive value if one or more wakeups were 
pending. Dijkstra proposed having two operations, 
down and up (generalizations of sleep and wakeup). 
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4.5 Semaphores

The down operation checks to see if the value is 
greater than 0. If so, it decrements the value and just 
continues. If the value is 0, the process is put to sleep 
without completing the down for the moment. Checking 
the value, changing it, and possibly going to sleep, 
are all done as a single, indivisible atomic action. It is 
guaranteed that once a semaphore operation has 
started, no other process can access the semaphore 
until the operation has completed or blocked. 
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4.5 Semaphores
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The up operation increments the value of the 
semaphore addressed. If one or more processes were 
sleeping on that semaphore, unable to complete an 
earlier down operation, one of them is chosen by the 
system and is allowed to complete its down. Thus, 
after an up on a semaphore with processes sleeping 
on it, the semaphore will still be 0, but there will be 
one fewer process sleeping on it. The operation of 
incrementing the semaphore and waking up one 
process is also indivisible.
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4.5 Semaphores

Semaphores can be used in the lost-wakeup problem. 
The way to work them correctly is to implement up 
and down as system calls, with the operating system 
briefly disabling all interrupts while it is testing the 
semaphore, updating it, and putting the process to 
sleep, if necessary. As all of these actions take only a 
few instructions, no harm is done in disabling 
interrupts. If multiple CPUs are being used, each 
semaphore should be protected by a lock variable, 
with the TSL instructions used to make sure that only 
one CPU at a time examines the semaphore.

44

4.5 Semaphores
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4.5 Semaphores

This solution uses three semaphores; "full" for counting 
the number of full slots, "empty" for counting the 
number of empty slots, and "mutex" to make sure 
produce and consumer don’t access the buffer at the 
same time. Initially, “full" is 0, "empty" is the number 
of slots in the buffer, and "mutex" is 1. Semaphores 
used by two or more processes, where only one of 
them can enter its critical region at the same time are 
called binary semaphores. If a process uses down 
and up correctly, mutual exclusion is guaranteed.
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4.5 Semaphores

Here, semaphores are used in two different ways. At 
first is for mutual exclusion with the mutex semaphore . 
It is designed to guarantee that only one process at a 
time will be reading or writing the buffer and the 
associated variables. The other use of semaphores is 
for synchronization. The full and empty semaphores 
are needed to guarantee that certain event sequences 
do or do not occur. In this case, they ensure that the 
producer stops running when the buffer is full, and 
that the consumer stops running when it is empty.
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4.5 Semaphores

When the semaphore's ability to count is not needed, 
a simplified version of the semaphore, called a mutex, 
is sometimes used. Mutexes are good only for 
managing mutual exclusion to some shared resource or 
piece of code. They are easy and efficient to 
implement, which makes them especially useful in 
thread packages that are implemented entirely in 
user space.
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4.6 Mutexes
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A mutex is a variable that can be in one of two states: 
unlocked or locked. When a process (or thread) needs 
access to a critical region, it calls mutex_lock. If the 
mutex is currently unlocked, the call succeeds and the 
calling thread is free to enter the critical region. On 
the other hand, if the mutex is already locked, the 
calling thread is blocked until the thread in the critical 
region is finished and calls mutex_unlock. If multiple 
threads are blocked on the mutex, one of them is 
chosen at random and allowed to acquire the lock.
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4.6 Mutexes
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4.6 Mutexes

Implementation of mutex_lock and mutex_unlock

In source code of semaphore, the two downs in the 
producer's code were reversed in order, so mutex was 
decremented before empty instead of after it. If the 
buffer were completely full, the producer would block, 
with mutex set to 0. Consequently, the next time the 
consumer tried to access the buffer, it would do a 
down on mutex, now 0, and block too. Both processes 
would stay blocked forever and no more work would 
ever be done. This unfortunate situation is called a 
deadlock.
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4.7 Monitors

This problem is pointed out to show how careful you 
must be when using semaphores. To make it easier to 
write correct programs, a higher-level synchronization 
primitive is proposed, called a monitor. A monitor is a 
collection of procedures, variables, and data 
structures that are all grouped together in a special 
kind of module or package. Processes may call the 
procedures in a monitor whenever they want to, but 
they cannot directly access the monitor's internal data 
structures from procedures declared outside monitor.
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4.7 Monitors

Monitors have an important property: only one 
process can be active in a monitor at any instant 
Monitor is a programming language construct, so the 
compiler knows it is special and can handle calls to 
monitor procedures. Typically, when a process calls a 
monitor procedure, the first few instructions of the 
procedure will check to see if any other process is 
currently active within the monitor. If so, the calling 
process will be suspended until the other process has 
left the monitor. If no other process is using the 
monitor, the calling process may enter.
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4.7 Monitors

It is up to the compiler to implement mutual exclusion 
on monitor entries, but a common way is to use a 
binary semaphore. Because the compiler is arranging 
for the mutual exclusion, the error probability is very 
small. It is sufficient to know that if all the critical 
regions are turned into monitor procedures, no two 
processes will ever execute their critical regions at the 
same time. But, how should the producer block when it 
finds the buffer full? 
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4.7 Monitors



10

The solution lies in two operations, wait and signal. 
When a monitor procedure discovers that it cannot 
continue (e.g., the producer finds the buffer full), it 
does a wait on some condition variables, say, "full". 
This action causes the calling process to block. It also 
allows another process that had been previously 
prohibited from entering the monitor to enter now. This 
other process, for example, the consumer, can wake up 
its sleeping partner by doing a signal on the condition 
variable that its partner is waiting on.
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4.7 Monitors

To avoid having two active processes in the monitor at 
the same time, a process doing a signal must exit the 
monitor immediately. In other word, a signal statement 
may appear only as the final statement in a monitor 
procedure. If a signal is done on a condition variable 
on which several processes are waiting, only one of 
them, determined by the system scheduler, is revived. 
Another solution is to let the signaler continue to run 
and allow the waiting process to start running only 
after the signaler has exited the monitor. 
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4.7 Monitors
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4.7 Monitors

Outline of producer-consumer problem with monitors

A problem with monitors (also semaphores) is that they 
were designed for solving the mutual exclusion 
problem on one or more CPUs that all have access to 
a common memory. By using the semaphores, we can 
avoid races. When we go to a distributed system 
consisting of multiple CPUs, each with its own private 
memory, connected by a local area network, these 
primitives become inapplicable. Also, none of the 
primitives allow information exchange between 
machines. Something else is needed.
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4.7 Monitors

This IPC method uses two primitives, "send" and 
"receive", which, like semaphores and unlike monitors, 
are system calls rather than language constructs. The 
former call sends a message to a given destination 
and the latter one receives a message from a given 
source. If no message is available, the receiver can 
block until one arrives. Alternatively, it can return 
immediately with an error code.
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4.8 Message Passing

Message passing systems have many challenging 
problems and design issues that do not arise with 
semaphores or with monitors, especially if the 
communicating processes are on different machines 
connected by a network. For example, messages can 
be lost by the network. To guard against lost 
messages, sender and receiver can agree that as soon 
as a message has been received, the receiver will 
send back a special acknowledgement message. If the 
sender has not received acknowledgement (ack) in a 
certain time interval, it retransmits the message.
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4.8 Message Passing
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If message is received correctly, but acknowledgement 
back to the sender is lost. The sender will retransmit 
the message, so the receiver will get it twice. Usually, 
this problem is solved by putting consecutive sequence 
numbers in each original message. If the receiver gets 
a message bearing the same sequence number as the 
previous message, it knows that the message is a 
duplicate that can be ignored.
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4.8 Message Passing

Message systems also have to deal with the question 
of how processes are named, so that the process 
specified in a send or receive call is unambiguous. 
Authentication is also an issue in message systems: how 
can the client tell that it is communicating with the real 
file server, and not with an imposter? Another design 
issue occurs when the sender and receiver are on the 
same machine. Copying messages from one process to 
another is always slower than doing a semaphore 
operation or entering a monitor.
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4.8 Message Passing

The producer-consumer problem can be solved with 
message passing. We assume that all messages are 
the same size and that messages sent but not yet 
received are buffered automatically by the operating 
system. The buffer can keep N messages. Consumer 
starts out by sending N empty messages to the 
producer. Whenever the producer has an item to give 
to the consumer, it takes an empty message and sends 
back a full one. In this way, the messages can be 
stored in a given amount of memory known in 
advance.
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4.8 Message Passing
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4.8 Message Passing

If the producer works faster than the consumer, all the 
messages will end up full, waiting for the consumer; 
the producer will be blocked, waiting for an empty to 
come back. If the consumer works faster, then the 
reverse happens: all the messages will be empties 
waiting for the producer to fill them up; the consumer 
will be blocked, waiting for a full message.
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4.8 Message Passing

Our last synchronization mechanism is intended for 
groups of processes rather than two-process producer-
consumer type situations. Some applications are 
divided into phases and have the rule that no process 
may proceed into the next phase until all processes 
are ready to proceed to the next phase. This behavior 
may be achieved by placing a barrier at the end of 
each phase. When a process reaches the barrier, it is 
blocked until all processes have reached the barrier.
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4.9 Barriers
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4.9 Barriers

(a) processes approaching a barrier, 

(b) all processes but one blocked at barrier, 

(c) last process arrives, all are let through

In Figure, we see four processes approaching a 
barrier. What this means is that they are just 
computing and have not reached the end of the 
current phase yet. After a while, the first process 
finishes all the computing required of it during the first 
phase. It then executes the barrier primitive, generally 
by calling a library procedure. The process is then 
suspended. A little later, a second and then a third 
process finish the first phase and also execute the 
barrier primitive. Finally, when the last process, C, hits 
the barrier, all the processes are released.
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4.9 Barriers


