
1

OPERATING SYSTEMS

INTERPROCESS
COMMUNICATION

Processes frequently need to communicate with other
processes. For example, in a shell pipeline, the output
of the first process must be passed to the second
process, and so on down the line. Thus there is a need
for communication between processes, preferably in a
well-structured way not using interrupts. In this week,
we will look at some of the issues related to this
Interprocess Communication (IPC).

2

4 Interprocess Communication

Briefly, there are three issues here.

� How one process can pass information to another.

�Making sure two or more processes do not get in
each other's way.

� Proper sequencing when dependencies are
present.

3

4 Interprocess Communication

In some operating systems, processes that are working
together may share some common storage that each
one can read and write. To see how IPC works in
practice, let us consider a simple example: a print
spooler. When a process wants to print a file, it enters
the file name in a special spooler directory. Another
process, the printer daemon, periodically checks to
see if there are any files to be printed, and if there
are, it prints them and then removes their names from
the directory.

4

4.1Race Conditions

Imagine that our spooler directory has a very large
number of slots, numbered 0, 1, 2, .. " each one
capable of holding a file name. Also imagine that
there are two shared variables (out and in) which
points to the next file to be printed, and to the next
free slot in the directory, respectively. These variables
might well be kept on a two-word file available to all
processes. At a certain instant, slots 0 to 3 are empty
(the files have already been printed) and slots 4 to 6
are full. More or less simultaneously, processes A and
B decide they want to queue a file for printing.

5

4.1Race Conditions
6

4.1Race Conditions

Two processes want to access shared memory at same time

2

Process A reads "in" and stores the value, 7, in a local
variable called next_free_slot. Just then a clock
interrupt occurs and the CPU decides that process A
has run long enough, so it switches to process B.
Process B also reads in, and also gets a 7. It too stores
it in its local variable next_free_slot. At this instant
both processes think that the next available slot is 7.
Process B now continues to run. It stores the name of its
file in slot 7 and updates in to be an 8.

7

4.1Race Conditions

Process A runs again, starting from the place it left
off. It writes its file name in slot 7, erasing the name
that process B just put there. Then it sets “in” to 8. The
spooler directory is now internally consistent, so the
printer daemon will not notice anything wrong, but
process B will never receive any output. Situations like
this, where two or more processes are reading or
writing some shared data and the final result depends

on who runs precisely when, are called

race conditions.

8

4.1Race Conditions

Sometimes a process has to access shared memory or
files, or do other critical things that can lead to races.
That part of the program where the shared memory is
accessed is called the critical region.

How do we avoid race conditions? Mutual exclusion
is a solution which describes some way of making sure
that if one process is using a shared data, the other
processes will be excluded from doing the same thing.

9

4.2 Critical Regions

Four conditions to provide mutual exclusion:

1. No two processes simultaneously in critical region

2. No assumptions made about speeds or numbers of
CPUs

3. No process running outside its critical region may
block another process

4. No process must wait forever to enter its critical
region

10

4.2 Critical Regions

11

4.2 Critical Regions

Mutual exclusion using critical regions

In this section we will examine various proposals for
achieving mutual exclusion, so that while one process is
busy updating shared memory in its critical region, no
other process will enter its critical region and cause
trouble.

12

4.3 Mutual Exclusion

3

On a single-processor system, the simplest solution is
to have each process disable all interrupts just after
entering its critical region and re-enable them just
before leaving it. With interrupts disabled, no clock
interrupts can occur. The CPU is only switched from
process to process as a result of clock or other
interrupts, after all, and with interrupts turned off the
CPU will not be switched to another process. Thus,
once a process has disabled interrupts, it can examine
and update the shared memory without fear that any
other process will intervene.

13

4.3.1 Disabling Interrupts

This approach is generally unattractive because it is
unwise to give user processes the power to turn off
interrupts. Suppose that one of them did it, and never
turned them on again? That could be the end of the
system. Furthermore, if the system is a multiprocessor
(with two or possibly more CPUs) disabling interrupts
affects only the CPU that executed the disable
instruction. The other ones will continue running and
can access the shared memory.

14

4.3.1 Disabling Interrupts

On the other hand, it is frequently convenient for the
kernel itself to disable interrupts for a few instructions
while it is updating variables or lists. If an interrupt
occurred while the list of ready processes, for
example, was in an inconsistent state, race conditions
could occur. The conclusion is: disabling interrupts is
often a useful technique within the operating system
itself but is not appropriate as a general mutual
exclusion mechanism for user processes.

15

4.3.1 Disabling Interrupts

The possibility of achieving mutual exclusion by
disabling interrupts -even within the kernel- is
becoming less every day due to the increasing number
of multi core chips even in low-end PCs. Two cores are
already common, four are present in high-end
machines, and eight or 16 are not far behind. In a
multiprocessor system, disabling the interrupts of one
CPU does not prevent other CPUs from interfering
with operations the first CPU is performing.
Consequently, more sophisticated schemes are
needed.

16

4.3.1 Disabling Interrupts

As a second attempt, let us look for a software
solution. Consider having a single, shared (lock)
variable, initially O. When a process wants to enter its
critical region, it first tests the lock. If the lock is 0, the
process sets it to 1 and enters the critical region. If the
lock is already 1, the process just waits until it
becomes O. Thus, a 0 means that no process is in its
critical region, and a 1 means that some process is in
its critical region.

17

4.3.2 Lock Variables

Unfortunately, this idea contains exactly the same
fatal flaw that we saw in the spooler directory.
Suppose that one process reads the lock and sees that
it is O. Before it can set the lock to I, another process
is scheduled, runs, and sets the lock to 1. When the
first process runs again, it will also set the lock to I,
and two processes will be in their critical regions at
the same time.

18

4.3.2 Lock Variables

4

Now you might think that we could get around this
problem by first reading out the lock value, then
checking it again just before storing into it, but that
really does not help. The race now occurs if the
second process modifies the lock just after the first
process has finished its second check.

19

4.3.2 Lock Variables

A third approach to the mutual exclusion problem is
shown in figure.

20

4.3.3 Strict Alternation

(a) Process 0. (b) Process 1.

In figure, the integer variable “turn” keeps track of
whose turn it is to enter the critical region. Initially,
Process0 inspects “turn”, finds it to be 0, and enters its
critical region. Process1 also finds it to be 0 and
therefore sits in a tight loop continually testing turn to
see when it becomes 1. Continuously testing a
variable until some value appears is called busy
waiting. It should usually be avoided, since it wastes
CPU time. Only when the wait will be short, using busy
waiting may be reasonable. A lock that uses busy
waiting is called a spin lock.

21

4.3.3 Strict Alternation

When Process0 leaves the critical region, it sets “turn”
to 1, to allow Process1 to enter its critical region.
Suppose that Process1 finishes its critical region
quickly, so that both processes are in their noncritical
regions, with “turn” set to 0. Now Process0 executes its
whole loop quickly, exiting its critical region and
setting “turn” to 1. At this point “turn” is 1 and both
processes are executing in their noncritical regions.

22

4.3.3 Strict Alternation

Suddenly, Process0 finishes its noncritical region and
goes back to the top of its loop. Unfortunately, it is not
permitted to enter its critical region now, because
“turn” is 1 and Process1 is busy with its noncritical
region. It hangs in its while loop until Process1 sets
“turn” to 0. Put differently, taking turns is not a good
idea when one of the processes is much slower than
the other. This algorithm can not be a solution because
it violates condition 3.

23

4.3.3 Strict Alternation

By combining the idea of taking turns with the idea of
lock variables and warning variables, Peterson
discovered a much simpler way to achieve mutual
exclusion in 1981. Before entering the critical region,
each process calls "enter_region" with its own process
number, 0 or 1, as parameter. This call will cause it to
wait, if need be, until it is safe to enter. After it has
finished with the shared variables, the process calls
"leave_region" to indicate that it is done and to allow
the other process to enter, if it so desires.

24

4.3.4 Peterson's Solution

5

25

4.3.4 Peterson's Solution

Initially neither process is in its critical region. Now
process 0 calls "enter_region". It indicates its interest
by setting its array element and sets "turn" to 0. Since
Process1 is not interested, "enter_region" returns
immediately. If Process1 now makes a call to
"enter_region", it will hang there until "interested[0]"
goes to FALSE, an event that only happens when
Process0 calls "leave_region" to exit the critical
region.

26

4.3.4 Peterson's Solution

Now consider the case that both processes call
"enter_region" almost simultaneously. Both will store
their process number in "turn". Whichever store is
done last is the one that counts; the first one is
overwritten and lost. Suppose that Process1 stores
last, so "turn" is 1. When both processes come to the
while statement, Process0 executes it zero times and
enters its critical region. Process1 loops and does not
enter its critical region until Process0 exits its critical
region.

27

4.3.4 Peterson's Solution

Some computers, especially those designed with
multiple processors in mind, have an instruction like TSL
(Test and Set Lock). It reads the contents of the
memory word lock into register RX and then stores a
nonzero value at the memory address lock. The
operations of reading the word and storing into it are
guaranteed to be indivisible (no other processor can
access the memory word until the instruction is
finished). The CPU executing the TSL instruction locks
the memory bus to prohibit other CPUs from accessing
memory until it is done.

28

4.3.5 The TSL Instruction

29

4.3.5 The TSL Instruction

Entering and leaving a critical region using the TSL instruction

It is important to note that locking the memory bus is
very different from disabling interrupts. Disabling
interrupts then performing a read on a memory word
followed by a write does not prevent a second
processor on the bus from accessing the word between
the read and the write. In fact, disabling interrupts on
processor 1 has no effect at all on processor 2. The
only way to keep processor 2 out of the memory until
processor 1 is finished is to lock the bus, which
requires a special hardware system.

30

4.3.5 The TSL Instruction

6

To use the TSL instruction, we will use a shared
variable ("lock") to coordinate access to shared
memory. When "lock" is 0, any process may set it to 1
using the TSL instruction and then read or write the
shared memory. When it is done, the process sets
"lock" back to 0 using an ordinary move instruction.

31

4.3.5 The TSL Instruction

To prevent two processes from simultaneously entering
their critical regions, there are four-instruction
subroutines. The first instruction copies the old value of
"lock" to the register and then sets "lock" to 1. Then
the old value is compared with 0. If it is nonzero, the
lock was already set, so the program just goes back
to the beginning and tests it again. When the process
is done with its critical region, it will become 0, and
the subroutine returns, with the lock set. For clearing
the lock, the program just stores a 0 in "lock".

32

4.3.5 The TSL Instruction

Both Peterson's solution and the solutions using TSL are
correct, but both have the defect of requiring busy
waiting. In essence, what these solutions do is this:
when a process wants to enter its critical region, it
checks to see if the entry is allowed. If it is not, the
process just sits in a tight loop waiting until it is. Not
only does this approach waste CPU time, but it can
also have unexpected effects.

33

4.4 Sleep and Wakeup

Consider a computer with two processes, H, with high
priority, and L, with low priority. The scheduling rules
are such that H is run whenever it is in ready state. At
a certain moment, with L in its critical region, H
becomes ready to run (e.g., an I/O operation
completes). H now begins busy waiting, but since L is
never scheduled while H is running, L never gets the
chance to leave its critical region, so H loops forever.
This situation is sometimes referred to as the priority
inversion problem.

34

4.4 Sleep and Wakeup

Now let us look at some interprocess communication
primitives that block instead of wasting CPU time
when they are not allowed to enter their critical
regions. One of the simplest is the pair "sleep" and
"wakeup". "Sleep" is a system call that causes the
caller to block, that is, be suspended until another
process wakes it up. "Wakeup" call has one
parameter, the process to be awakened.

35

4.4 Sleep and Wakeup

Let us use these primitives in an example of the
producer-consumer problem. Two processes share a
fixed-size buffer. One of them, the producer, puts
data into the buffer, and the other one, the consumer,
takes it out. Trouble arises when the producer wants to
put a new item in the buffer, but it is already full. The
solution is for the producer to go to sleep, to be
awakened when the consumer has removed an item. If
the consumer wants to remove an item from the buffer
when the buffer is empty, it goes to sleep until the
producer puts something in the buffer and wakes it up.

36

4.4 Sleep and Wakeup

7

This approach may lead to the same kinds of race
conditions. To keep track of the number of items in the
buffer, we will use a variable, count. If the maximum
number of items the buffer can hold is N, producer's
code will first test to see if count is N. If it is not, the
producer will add an item and increment count; if it is,
producer will go to sleep. Consumer's code is similar:
first test count to see if it is 0. If it is, go to sleep; if it
is nonzero, remove an item and decrement the counter.
Each of the processes also tests to see if the other
should be awakened, and if so, wakes it up.

37

4.4 Sleep and Wakeup
38

4.4 Sleep and Wakeup

A race condition can occur because access to count is
unconstrained; e.g. the buffer is empty and the
consumer has just read count to see if it is 0. At that
instant, the scheduler decides to stop running the
consumer temporarily and start running the producer.
The producer inserts an item in the buffer, increments
count, and notices that it is now 1. Reasoning that
count was just 0, and thus the consumer must be
sleeping, the producer calls wakeup to wake the
consumer up.

39

4.4 Sleep and Wakeup

Unfortunately, the consumer is not yet logically asleep,
so the wakeup signal is lost. When the consumer next
runs, it will test the value of count it previously read,
find it to be 0, and go to sleep. Sooner or later the
producer will fill up the buffer and also go to sleep.
Both will sleep forever. Let us try to fix by a wakeup
waiting bit. When a wakeup is sent to a process that
is still awake, this bit is set. Later, when the process
tries to go to sleep, if the wakeup waiting bit is on, it
will be turned off, but the process will stay awake.
One (or more) wakeup waiting bit does not work.

40

4.4 Sleep and Wakeup

This was the situation in 1965, when Dijkstra
suggested using an integer variable to count the
number of wakeups saved for future use. In his
proposal, a new variable type, which he called a
semaphore, was introduced. A semaphore could have
the value 0, indicating that no wakeups were saved,
or some positive value if one or more wakeups were
pending. Dijkstra proposed having two operations,
down and up (generalizations of sleep and wakeup).

41

4.5 Semaphores

The down operation checks to see if the value is
greater than 0. If so, it decrements the value and just
continues. If the value is 0, the process is put to sleep
without completing the down for the moment. Checking
the value, changing it, and possibly going to sleep,
are all done as a single, indivisible atomic action. It is
guaranteed that once a semaphore operation has
started, no other process can access the semaphore
until the operation has completed or blocked.

42

4.5 Semaphores

8

The up operation increments the value of the
semaphore addressed. If one or more processes were
sleeping on that semaphore, unable to complete an
earlier down operation, one of them is chosen by the
system and is allowed to complete its down. Thus,
after an up on a semaphore with processes sleeping
on it, the semaphore will still be 0, but there will be
one fewer process sleeping on it. The operation of
incrementing the semaphore and waking up one
process is also indivisible.

43

4.5 Semaphores

Semaphores can be used in the lost-wakeup problem.
The way to work them correctly is to implement up
and down as system calls, with the operating system
briefly disabling all interrupts while it is testing the
semaphore, updating it, and putting the process to
sleep, if necessary. As all of these actions take only a
few instructions, no harm is done in disabling
interrupts. If multiple CPUs are being used, each
semaphore should be protected by a lock variable,
with the TSL instructions used to make sure that only
one CPU at a time examines the semaphore.

44

4.5 Semaphores

45

4.5 Semaphores

This solution uses three semaphores; "full" for counting
the number of full slots, "empty" for counting the
number of empty slots, and "mutex" to make sure
produce and consumer don’t access the buffer at the
same time. Initially, “full" is 0, "empty" is the number
of slots in the buffer, and "mutex" is 1. Semaphores
used by two or more processes, where only one of
them can enter its critical region at the same time are
called binary semaphores. If a process uses down
and up correctly, mutual exclusion is guaranteed.

46

4.5 Semaphores

Here, semaphores are used in two different ways. At
first is for mutual exclusion with the mutex semaphore .
It is designed to guarantee that only one process at a
time will be reading or writing the buffer and the
associated variables. The other use of semaphores is
for synchronization. The full and empty semaphores
are needed to guarantee that certain event sequences
do or do not occur. In this case, they ensure that the
producer stops running when the buffer is full, and
that the consumer stops running when it is empty.

47

4.5 Semaphores

When the semaphore's ability to count is not needed,
a simplified version of the semaphore, called a mutex,
is sometimes used. Mutexes are good only for
managing mutual exclusion to some shared resource or
piece of code. They are easy and efficient to
implement, which makes them especially useful in
thread packages that are implemented entirely in
user space.

48

4.6 Mutexes

9

A mutex is a variable that can be in one of two states:
unlocked or locked. When a process (or thread) needs
access to a critical region, it calls mutex_lock. If the
mutex is currently unlocked, the call succeeds and the
calling thread is free to enter the critical region. On
the other hand, if the mutex is already locked, the
calling thread is blocked until the thread in the critical
region is finished and calls mutex_unlock. If multiple
threads are blocked on the mutex, one of them is
chosen at random and allowed to acquire the lock.

49

4.6 Mutexes
50

4.6 Mutexes

Implementation of mutex_lock and mutex_unlock

In source code of semaphore, the two downs in the
producer's code were reversed in order, so mutex was
decremented before empty instead of after it. If the
buffer were completely full, the producer would block,
with mutex set to 0. Consequently, the next time the
consumer tried to access the buffer, it would do a
down on mutex, now 0, and block too. Both processes
would stay blocked forever and no more work would
ever be done. This unfortunate situation is called a
deadlock.

51

4.7 Monitors

This problem is pointed out to show how careful you
must be when using semaphores. To make it easier to
write correct programs, a higher-level synchronization
primitive is proposed, called a monitor. A monitor is a
collection of procedures, variables, and data
structures that are all grouped together in a special
kind of module or package. Processes may call the
procedures in a monitor whenever they want to, but
they cannot directly access the monitor's internal data
structures from procedures declared outside monitor.

52

4.7 Monitors

Monitors have an important property: only one
process can be active in a monitor at any instant
Monitor is a programming language construct, so the
compiler knows it is special and can handle calls to
monitor procedures. Typically, when a process calls a
monitor procedure, the first few instructions of the
procedure will check to see if any other process is
currently active within the monitor. If so, the calling
process will be suspended until the other process has
left the monitor. If no other process is using the
monitor, the calling process may enter.

53

4.7 Monitors

It is up to the compiler to implement mutual exclusion
on monitor entries, but a common way is to use a
binary semaphore. Because the compiler is arranging
for the mutual exclusion, the error probability is very
small. It is sufficient to know that if all the critical
regions are turned into monitor procedures, no two
processes will ever execute their critical regions at the
same time. But, how should the producer block when it
finds the buffer full?

54

4.7 Monitors

10

The solution lies in two operations, wait and signal.
When a monitor procedure discovers that it cannot
continue (e.g., the producer finds the buffer full), it
does a wait on some condition variables, say, "full".
This action causes the calling process to block. It also
allows another process that had been previously
prohibited from entering the monitor to enter now. This
other process, for example, the consumer, can wake up
its sleeping partner by doing a signal on the condition
variable that its partner is waiting on.

55

4.7 Monitors

To avoid having two active processes in the monitor at
the same time, a process doing a signal must exit the
monitor immediately. In other word, a signal statement
may appear only as the final statement in a monitor
procedure. If a signal is done on a condition variable
on which several processes are waiting, only one of
them, determined by the system scheduler, is revived.
Another solution is to let the signaler continue to run
and allow the waiting process to start running only
after the signaler has exited the monitor.

56

4.7 Monitors

57

4.7 Monitors

Outline of producer-consumer problem with monitors

A problem with monitors (also semaphores) is that they
were designed for solving the mutual exclusion
problem on one or more CPUs that all have access to
a common memory. By using the semaphores, we can
avoid races. When we go to a distributed system
consisting of multiple CPUs, each with its own private
memory, connected by a local area network, these
primitives become inapplicable. Also, none of the
primitives allow information exchange between
machines. Something else is needed.

58

4.7 Monitors

This IPC method uses two primitives, "send" and
"receive", which, like semaphores and unlike monitors,
are system calls rather than language constructs. The
former call sends a message to a given destination
and the latter one receives a message from a given
source. If no message is available, the receiver can
block until one arrives. Alternatively, it can return
immediately with an error code.

59

4.8 Message Passing

Message passing systems have many challenging
problems and design issues that do not arise with
semaphores or with monitors, especially if the
communicating processes are on different machines
connected by a network. For example, messages can
be lost by the network. To guard against lost
messages, sender and receiver can agree that as soon
as a message has been received, the receiver will
send back a special acknowledgement message. If the
sender has not received acknowledgement (ack) in a
certain time interval, it retransmits the message.

60

4.8 Message Passing

11

If message is received correctly, but acknowledgement
back to the sender is lost. The sender will retransmit
the message, so the receiver will get it twice. Usually,
this problem is solved by putting consecutive sequence
numbers in each original message. If the receiver gets
a message bearing the same sequence number as the
previous message, it knows that the message is a
duplicate that can be ignored.

61

4.8 Message Passing

Message systems also have to deal with the question
of how processes are named, so that the process
specified in a send or receive call is unambiguous.
Authentication is also an issue in message systems: how
can the client tell that it is communicating with the real
file server, and not with an imposter? Another design
issue occurs when the sender and receiver are on the
same machine. Copying messages from one process to
another is always slower than doing a semaphore
operation or entering a monitor.

62

4.8 Message Passing

The producer-consumer problem can be solved with
message passing. We assume that all messages are
the same size and that messages sent but not yet
received are buffered automatically by the operating
system. The buffer can keep N messages. Consumer
starts out by sending N empty messages to the
producer. Whenever the producer has an item to give
to the consumer, it takes an empty message and sends
back a full one. In this way, the messages can be
stored in a given amount of memory known in
advance.

63

4.8 Message Passing
64

4.8 Message Passing

If the producer works faster than the consumer, all the
messages will end up full, waiting for the consumer;
the producer will be blocked, waiting for an empty to
come back. If the consumer works faster, then the
reverse happens: all the messages will be empties
waiting for the producer to fill them up; the consumer
will be blocked, waiting for a full message.

65

4.8 Message Passing

Our last synchronization mechanism is intended for
groups of processes rather than two-process producer-
consumer type situations. Some applications are
divided into phases and have the rule that no process
may proceed into the next phase until all processes
are ready to proceed to the next phase. This behavior
may be achieved by placing a barrier at the end of
each phase. When a process reaches the barrier, it is
blocked until all processes have reached the barrier.

66

4.9 Barriers

12

67

4.9 Barriers

(a) processes approaching a barrier,

(b) all processes but one blocked at barrier,

(c) last process arrives, all are let through

In Figure, we see four processes approaching a
barrier. What this means is that they are just
computing and have not reached the end of the
current phase yet. After a while, the first process
finishes all the computing required of it during the first
phase. It then executes the barrier primitive, generally
by calling a library procedure. The process is then
suspended. A little later, a second and then a third
process finish the first phase and also execute the
barrier primitive. Finally, when the last process, C, hits
the barrier, all the processes are released.

68

4.9 Barriers

