
1

OPERATING SYSTEMS

CLASSICAL IPC PROBLEMS

The operating systems literature is full of interesting
problems that have been widely discussed and
analyzed using a variety of synchronization methods.
In the following sections we will examine four of the
better-known problems.

2

5 Classical IPC Problems

Since 1965 (Dijkstra posed and solved this
synchronization problem), everyone inventing a new
synchronization primitive has tried to demonstrate its
abilities by solving the dining philosophers problem.
The problem can be stated quite simply as follows.
Five philosophers are seated around a circular table.
Each philosopher has a plate of spaghetti. The
spaghetti is so slippery that a philosopher needs two
forks to eat it. Between each pair of plates, there is
only one fork.

3

5.1 The Dining Philosophers Problem
4

5.1 The Dining Philosophers Problem

Philosophers eat/think, eating needs 2 forks, pick one fork at a time.

How to prevent deadlock?

The life of a philosopher consists of alternate periods
of eating and thinking. This is something of an
abstraction, even for philosophers, but the other
activities are irrelevant here. When a philosopher
gets hungry, she tries to acquire her left and right
forks, one at a time, in either order. If successful in
acquiring two forks, she eats for a while, then puts
down the forks, and continues to think.

5

5.1 The Dining Philosophers Problem

It has been pointed out that the two-fork requirement
is somewhat artificial; perhaps we should switch from
Italian food to Chinese food, replacing rice for
spaghetti and chopsticks for forks.

The key question is: Can you write a program for each
philosopher that does what it is supposed to do and
never gets stuck? There is a obvious solution.

6

5.1 The Dining Philosophers Problem

2

7

5.1 The Dining Philosophers Problem

#define N 5;

void philosopher(int i) {

while(TRUE) {

think();

take_fork(i);

take_fork((i+1)%5);

eat();

put_fork(i);

put_fork((i+1)%5);

}

}

The procedure take_fork waits until the specified fork
is available and then seizes it. Unfortunately, the
obvious solution is wrong. Suppose that all five
philosophers take their left forks simultaneously. None
will be able to take their right forks, and there will be
a deadlock.

What about semaphores?

8

5.1 The Dining Philosophers Problem

9

5.1 The Dining Philosophers (poor solution)

shared binary semaphore fork[5] = 1;

void philosopher(int i) {

while(TRUE) {

think();

down(fork[i]);

down(fork[(i+1)%5]);

eat();

up(fork[i]);

up(fork[(i+1)%5]);

}

}

The same problem is present. We could modify the
program so that after taking the left fork, the
program checks to see if the right fork is available. If
it is not, the philosopher puts down the left one, waits
for some time, and then repeats the whole process.
With a little bit of bad luck, all the philosophers could
start the algorithm simultaneously, picking up their left
forks, seeing that their right forks were not available,
putting down their left forks, waiting, picking up their
left forks again at the same time, and so on, forever.

10

5.1 The Dining Philosophers Problem

A situation like this (in which all the programs continue
to run indefinitely but fail to make any progress) is
called starvation. It is called starvation even when the
problem does not occur in an Italian or a Chinese
restaurant.

Another idea is might be waiting a random time after
failing to acquire the right-hand fork. In nearly all
applications trying again later is not a problem.

11

5.1 The Dining Philosophers Problem

For example, in the popular Ethernet local area
network, if two computers send a packet at the same
time, they crash on the net, then each one waits a
random time and tries again. If we would have no
option, this solution would be accepted usable.

However, we have one solution that always works
and cannot fail due to an unlikely series of random
numbers.

Let us try a mutex semaphore.

12

5.1 The Dining Philosophers Problem

3

Another improvement is to protect the five statements
following the call to think by a binary semaphore.
Before starting to acquire forks, a philosopher would
do a down on mutex. After replacing the forks, she
would do an up on mutex.

From a theoretical viewpoint, this solution is sufficient.
From a practical one, it has a performance bug: only
one philosopher can be eating at any instant.

13

5.1 The Dining Philosophers Problem
14

5.1 The Dining Philosophers (mutex solution)

shared binary semaphore fork[5] = 1;

shared binary semaphore mutex = 1;

void philosopher(int i) {

while(TRUE) {

think();

down(&mutex);

down(fork[i]);

down(fork[(i+1)%5]);

eat();

up(fork[i]);

up(fork[(i+1)%5]);

up(&mutex); }

}

Using mutex, we avoid starvation
but now only one philosopher
can be active.

No two of them can eat at the
same time .

With five forks available, we should be able to allow
two philosophers to eat at the same time.

If we use mutex while the philosopher take the forks
and add some variables to control her neighbors, it
may be better solution. Also when putting the forks, to
get active her hungry neighbors would be the best
solution.

15

5.1 The Dining Philosophers Problem
16

5.1 The Dining Philosophers (best solution)

void put_forks(int i) {
down(&mutex);
state[i] = Thinking;
test(LEFT);
test(RIGHT);
up(&mutex);

}

void test (int i) {
if (state[i] == Hungry &&

state[LEFT] != Eating &&
state[RIGHT] != Eating) {

state[i] = Eating;
up (&s[i]);

}

int state[n];
shared binary semaphore mutex = 1;
shared binary semaphore s[N];
void philosopher (int i) {

while (TRUE) {
think();
take_forks(i);
eat();
put_forks(i); }

}
void take_forks(int i) {

down(&mutex);
state[i] = Hungry;
test(i);
up(&mutex);
down(&s[i]);

}

This solution presented is deadlock-free and allows
the maximum parallelism for an arbitrary number of
philosophers. It uses an array, state, to keep track of
whether a philosopher is eating, thinking, or hungry
(trying to acquire forks). A philosopher may only move
into eating state if neither neighbor is eating.
Philosopher i's neighbors are defined by the macros
LEFT and RIGHT. In other words, if i is 2, LEFT and
RIGHT represent 1 and 3, respectively.

17

5.1 The Dining Philosophers Problem

The program uses an array of semaphores, one per
philosopher, so hungry philosophers can block if the
needed forks are busy. Note that each process runs
the procedure philosopher as its main code, but the
other procedures, take_forks, put_forks, and test, are
ordinary procedures and not separate processes.

18

5.1 The Dining Philosophers Problem

4

A data object is shared among several concurrent
processes. Readers Processes that only want to read
the shared object. Writers Processes that want to
update (read and write) the shared object.

Any number of readers may access the data at one
time, but writers must have exclusive access.

How do we program the reader and writer?

19

5.2 The Readers and Writers Problem

A solution to this problem depends on what priorities
are required.

1. No reader will be kept waiting unless a writer is already
updating the data, (sometimes called first reader-writer
problem).

2. If a writer is waiting to access the data, no new readers
may start reading, (sometimes called second reader-writer
problem).

Both of these approaches may lead to starvation.

20

5.2 The Readers and Writers Problem

21

5.2 The Readers and Writers Problem
22

5.2 The Readers and Writers Problem

23

5.2 The Readers and Writers Problem 1

shared binary semaphore mutex = 1;
shared binary semaphore db = 1;
int readcount = 0;

void reader () {
down(mutex);
readcount++;
if (readcount == 1) then down(db);
up(mutex);
CRITICAL REGION to read

down(mutex);
readcount--;
if (readcount == 0) then up(db);
up(mutex);
}

void writer () {
down(db);
CRITICAL REGION to write

up(db);
}

24

5.2 The Readers and Writers Problem

5

In fact, the solution may starve writers in the queue.
Therefore, the new solution is sometimes proposed,
which adds the constraint that no thread shall be
allowed to starve; that is, the operation of obtaining
a lock on the shared data will always terminate in a
bounded amount of time.

25

5.2 The Readers and Writers Problem
26

5.2 The Readers and Writers Problem 2

binary semaphores in_line =1;
binary semaphores db=1;
binary semaphores mutex=1;
int readcount =0;

void writer () {
down(in_line);
down(db);
CRITICAL REGION to write

up(in_line);
up(db);

}

void reader () {
int count1, count2;
down(in_line);
down(mutex);
count1 = readcount ;
readcount = readcount + 1;
up(mutex);
if count1 ==0 then down(db);
up(in_line);
CRITICAL REGION to read

down(mutex);
readcount = readcount - 1;
count2 = nreaders;
up(mutex);
if count2==0 then up(db);

}

Another classical IPC problem takes place in a barber
shop. A barbershop consists of a waiting room with n
chairs, and the barber room containing the barber
chair. If there are no customers to be served, the
barber goes to sleep. If a customer enters the
barbershop and all chairs are occupied, then the
customer leaves the shop. If the barber is busy, but
chairs are available, then the customer sits in one of
the free chairs. If the barber is asleep, the customer
wakes up the barber. Write a program to coordinate
the barber and the customers.

27

5.3 The Sleeping Barber Problem
28

5.3 The Sleeping Barber Problem

Our solution uses three semaphores, customers (counts
waiting customers), barbers (the number of barbers
who are idle), and mutex (mutual exclusion). We also
need a variable, waiting, which also counts the waiting
customers. The reason for having waiting is that there
is no way to read the current value of a semaphore.
In this solution, a customer entering the shop has to
count the number of waiting customers. If it is less than
the number of chairs, he stays; otherwise, he leaves.

29

5.3 The Sleeping Barber Problem
30

5.3 The Sleeping Barber Problem

#define CHAIRS 5
semaphore customers = 0;
binary semaphore barber = 0;
binary semaphore mutex = 1;
int waiting = 0;

void barber(void) {
while (TRUE) {

down(&customers);
down(&mutex);
waiting = waiting - 1;
up(&barber);
up(&mutex);
cut_hair();
}

}

void customer(void) {
down(&mutex);
if (waiting < CHAIRS) {

waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barber);
get_haircut(); }

else {
up(&mutex);

}
}

6

When the barber shows up for work in the morning,
he executes the procedure barber, causing him to
block on the semaphore customers because it is
initially 0. The barber then goes to sleep. He stays
asleep until the first customer shows up. When a
customer arrives, he executes customer, starting by
acquiring mutex to enter a critical region. If another
customer enters shortly thereafter, the second one will
no be able to do anything until the first one has
released mutex.

31

5.3 The Sleeping Barber Problem

The customer then checks to see if the number of
waiting customers is less than the number of chairs. If
not, he releases mutex and leaves without a haircut.
If there is an available chair, the customer increments
the integer variable, waiting. Then he does an up on
the semaphore customers, thus waking up the barber.
At this point, the customer and the barber are both
awake. When the customer releases mutex, the
barber grabs it, does some housekeeping, and begins
the haircut.

32

5.3 The Sleeping Barber Problem

Four threads are involved: an agent and three
smokers. To make a cigarette, the ingredients are
tobacco, paper, and matches. The smokers loop
forever, first waiting for ingredients, then making and
smoking cigarettes. We assume that the agent has
infinite supply of all three ingredients, and each
smoker has infinite supply of one of the ingredients;
that is, one smoker has matches, another has paper,
and the third has tobacco.

33

5.4 The Cigarette Smokers

The agent repeatedly chooses two different
ingredients at random and makes them available to
the smokers. Depending on which ingredients are
chosen, the smoker with the complementary ingredient
should pick up both resources and proceed. For
example, if the agent puts out tobacco and paper, the
smoker with the matches should pick up both
ingredients, make a cigarette, and then signal the
agent.

34

5.4 The Cigarette Smokers

The agent uses the following semaphores:
binary semaphore agentSem = 1;

semaphore tobacco = 0;

semaphore paper = 0;

semaphore match = 0;

The agent is actually made up of three concurrent
threads, Agent A, Agent B and Agent C. Each one
does a down on agentSem; each time agentSem is
signaled, one of the Agents wakes up and provides
ingredients by doing an up on two semaphores.

35

5.4 The Cigarette Smokers
36

5.4 The Cigarette Smokers

void agent_A() {
down(agentSem);
up(tobacco);
up(paper); }

void Agent_B() {
down(agentSem);
up(paper);
up(match); }

void Agent_C() {
down(agentSem);
up(tobacco);
up(match); }

void smoker_matches() {
down(tobacco);
down(paper);
up(agentSem); }

void smoker_tobacco () {
down(paper);
down(match);
up(agentSem); }

void smoker_paper () {
down(match);
down(tobacco);
up(agentSem); }

7

What’s wrong with this solution? The problem with this
solution is the possibility of deadlock.

Imagine that when there was noting on the table, the
agent_A puts out tobacco and paper. Just after
smoker_matches used the last tobacco, scheduler
changes into smoker_tobacco. Unfortunately it uses
the last paper on the table and it leads a DEADLOCK!
Four processes must wait forever.

37

5.4 The Cigarette Smokers

The three smoker processes will make a cigarette and
smoke it. If they can't make a cigarette, then they will
go to sleep. The agent process will place two items on
the table, and wake up the appropriate smoker, and
then go to sleep.

The smoker immediately sleeps. When the agent puts
the two items on the table, then the agent will wake
up the appropriate smoker. The smoker will then grab
the items, and wake the agent.

38

5.4 The Cigarette Smokers

While the smoker is smoking, the agent can place two
items on the table, and wake a different smoker. The
agent sleeps immediately after placing the items out.
This is something like the producer-consumer problem
except the producer can only produce 1 item
(although a choice of 3 kinds of items) at a time.

39

5.4 The Cigarette Smokers

The variables and semaphores are:
semaphore tobacco = 0; //counter

semaphore paper = 0; //counter

semaphore match = 0; //counter

binary semaphore tobaccoSem = 0;

binary semaphore paperSem = 0;

binary semaphore matchSem = 0;

binary semaphore mutex = 1;

40

5.4 The Cigarette Smokers

41

5.4 The Cigarette Smokers

void agent() {
while(TRUE) {

down(mutex);
randNum = rand(3);
if (randNum == 1) {

up(tobacco);
up(paper);
up(matchSem);
}

elseif (randNum == 2) {
up(tobacco);
up(match);
up(paperSem);
}

else {
up(match);
up(paper);
up(tobaccoSem);
}

…
up(mutex);
down(agentSem);

}

void smoker_tobacco()
{
while(TRUE) {

down(tobaccoSem);
down(mutex);
down(match);
down(paper);
makeCigarette();
up(agentSem);
up(mutex);
Smoke();

}

