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OPERATING SYSTEMS

CLASSICAL IPC PROBLEMS

The operating systems literature is full of interesting 
problems that have been widely discussed and 
analyzed using a variety of synchronization methods. 
In the following sections we will examine four of the 
better-known problems.

2

5 Classical IPC Problems

Since 1965 (Dijkstra posed and solved this 
synchronization problem), everyone inventing a new 
synchronization primitive has tried to demonstrate its 
abilities by solving the dining philosophers problem. 
The problem can be stated quite simply as follows. 
Five philosophers are seated around a circular table. 
Each philosopher has a plate of spaghetti. The 
spaghetti is so slippery that a philosopher needs two 
forks to eat it. Between each pair of plates, there is 
only one fork.
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5.1 The Dining Philosophers Problem
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5.1 The Dining Philosophers Problem

Philosophers eat/think, eating needs 2 forks, pick one fork at a time.

How to prevent deadlock?

The life of a philosopher consists of alternate periods 
of eating and thinking. This is something of an 
abstraction, even for philosophers, but the other 
activities are irrelevant here. When a philosopher 
gets hungry, she tries to acquire her left and right 
forks, one at a time, in either order. If successful in 
acquiring two forks, she eats for a while, then puts 
down the forks, and continues to think.
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5.1 The Dining Philosophers Problem

It has been pointed out that the two-fork requirement 
is somewhat artificial; perhaps we should switch from 
Italian food to Chinese food, replacing rice for 
spaghetti and chopsticks for forks.

The key question is: Can you write a program for each 
philosopher that does what it is supposed to do and 
never gets stuck? There is a obvious solution.
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5.1 The Dining Philosophers Problem

#define N 5;

void philosopher(int i) {

while(TRUE) {

think();

take_fork(i);

take_fork((i+1)%5);

eat();

put_fork(i);

put_fork( (i+1)%5);

}

}

The procedure take_fork waits until the specified fork 
is available and then seizes it. Unfortunately, the 
obvious solution is wrong. Suppose that all five 
philosophers take their left forks simultaneously. None 
will be able to take their right forks, and there will be 
a deadlock.

What about semaphores?
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5.1 The Dining Philosophers (poor solution)

shared binary semaphore fork[5] = 1;

void philosopher(int i) {

while(TRUE) {

think();

down(fork[i]);

down(fork[(i+1)%5]);

eat();

up(fork[i]);

up(fork[(i+1)%5]);

}

}

The same problem is present. We could modify the 
program so that after taking the left fork, the 
program checks to see if the right fork is available. If 
it is not, the philosopher puts down the left one, waits 
for some time, and then repeats the whole process. 
With a little bit of bad luck, all the philosophers could 
start the algorithm simultaneously, picking up their left 
forks, seeing that their right forks were not available, 
putting down their left forks, waiting, picking up their 
left forks again at the same time, and so on, forever.
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5.1 The Dining Philosophers Problem

A situation like this (in which all the programs continue 
to run indefinitely but fail to make any progress) is 
called starvation. It is called starvation even when the 
problem does not occur in an Italian or a Chinese 
restaurant.

Another idea is might be waiting a random time after 
failing to acquire the right-hand fork. In nearly all 
applications trying again later is not a problem. 
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5.1 The Dining Philosophers Problem

For example, in the popular Ethernet local area 
network, if two computers send a packet at the same 
time, they crash on the net, then each one waits a 
random time and tries again. If we would have no 
option, this solution would be accepted usable. 

However, we have one solution that always works 
and cannot fail due to an unlikely series of random 
numbers. 

Let us try a mutex semaphore.
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Another improvement is to protect the five statements 
following the call to think by a binary semaphore. 
Before starting to acquire forks, a philosopher would 
do a down on mutex. After replacing the forks, she 
would do an up on mutex. 

From a theoretical viewpoint, this solution is sufficient. 
From a practical one, it has a performance bug: only 
one philosopher can be eating at any instant.
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5.1 The Dining Philosophers (mutex solution)

shared binary semaphore fork[5] = 1;

shared binary semaphore mutex = 1;

void philosopher(int i) {

while(TRUE) {

think();

down(&mutex);

down(fork[i]);

down(fork[(i+1)%5]);

eat();

up(fork[i]);

up(fork[(i+1)%5]);

up(&mutex);  }

}

Using mutex, we avoid starvation 
but now only one philosopher 
can be active. 

No two of them can eat at the 
same time .

With five forks available, we should be able to allow 
two philosophers to eat at the same time.

If we use mutex while the philosopher take the forks 
and add some variables to control her neighbors, it 
may be better solution. Also when putting the forks, to 
get active her hungry neighbors would be the best 
solution.
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5.1 The Dining Philosophers (best solution)

void put_forks(int i) {
down(&mutex);
state[i] = Thinking;
test(LEFT);
test(RIGHT);
up(&mutex);

}

void test (int i) {
if ( state[i] == Hungry &&

state[LEFT] != Eating &&
state[RIGHT] != Eating ) {

state[i] = Eating;
up (&s[i] );

}

int state[n];
shared binary semaphore mutex = 1;
shared binary semaphore s[N];
void philosopher (int i) {

while ( TRUE ) {
think();
take_forks(i);
eat();
put_forks(i); }

}
void take_forks(int i) {

down(&mutex);
state[i] = Hungry;
test(i);
up(&mutex);
down( &s[i]);

}

This solution presented is deadlock-free and allows 
the maximum parallelism for an arbitrary number of 
philosophers. It uses an array, state, to keep track of 
whether a philosopher is eating, thinking, or hungry 
(trying to acquire forks). A philosopher may only move 
into eating state if neither neighbor is eating. 
Philosopher i's neighbors are defined by the macros 
LEFT and RIGHT. In other words, if i is 2, LEFT and 
RIGHT represent 1 and 3, respectively.
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5.1 The Dining Philosophers Problem

The program uses an array of semaphores, one per 
philosopher, so hungry philosophers can block if the 
needed forks are busy. Note that each process runs 
the procedure philosopher as its main code, but the 
other procedures, take_forks, put_forks, and test, are 
ordinary procedures and not separate processes.
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A data object is shared among several concurrent 
processes. Readers Processes that only want to read 
the shared object. Writers Processes that want to 
update (read and write) the shared object.

Any number of readers may access the data at one 
time, but writers must have exclusive access.

How do we program the reader and writer?
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5.2 The Readers and Writers Problem

A solution to this problem depends on what priorities 
are required.

1. No reader will be kept waiting unless a writer is already 
updating the data, (sometimes called first reader-writer 
problem).

2. If a writer is waiting to access the data, no new readers 
may start reading, (sometimes called second reader-writer 
problem).

Both of these approaches may lead to starvation.
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5.2 The Readers and Writers Problem
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5.2 The Readers and Writers Problem 1

shared binary semaphore mutex = 1;
shared binary semaphore db = 1;
int readcount = 0;

void reader () {
down(mutex);
readcount++;
if (readcount == 1) then down(db);
up(mutex);
CRITICAL REGION to read

down(mutex);
readcount--;
if (readcount == 0) then up(db);
up(mutex);
}

void writer () {
down(db);
CRITICAL REGION to write

up(db);
}
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In fact, the solution may starve writers in the queue. 
Therefore, the new solution is sometimes proposed, 
which adds the constraint that no thread shall be 
allowed to starve; that is, the operation of obtaining 
a lock on the shared data will always terminate in a 
bounded amount of time.
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5.2 The Readers and Writers Problem 2

binary semaphores in_line =1;
binary semaphores db=1;
binary semaphores mutex=1;
int readcount =0; 

void writer () {
down(in_line);
down( db);
CRITICAL REGION to write

up(in_line);
up(db);

}

void reader () {
int count1, count2;
down(in_line);
down(mutex);
count1 = readcount ;
readcount = readcount + 1;
up(mutex);
if count1 ==0  then down(db);
up(in_line);
CRITICAL REGION to read 

down(mutex);
readcount = readcount - 1;
count2 = nreaders;
up(mutex);
if count2==0 then up(db);

}

Another classical IPC problem takes place in a barber 
shop. A barbershop consists of a waiting room with n 
chairs, and the barber room containing the barber 
chair. If there are no customers to be served, the 
barber goes to sleep. If a customer enters the 
barbershop and all chairs are occupied, then the 
customer leaves the shop. If the barber is busy, but 
chairs are available, then the customer sits in one of 
the free chairs. If the barber is asleep, the customer 
wakes up the barber. Write a program to coordinate 
the barber and the customers.
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5.3 The Sleeping Barber Problem

Our solution uses three semaphores, customers (counts 
waiting customers), barbers (the number of  barbers 
who are idle), and mutex (mutual  exclusion). We also 
need a variable, waiting, which also counts the waiting 
customers.  The reason for having waiting is that there 
is no way to read the current value of a  semaphore. 
In this solution, a customer entering the shop has to 
count the number of  waiting customers. If it is less than 
the number of chairs, he stays; otherwise, he leaves. 
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5.3 The Sleeping Barber Problem

#define CHAIRS 5
semaphore customers = 0; 
binary semaphore barber = 0; 
binary semaphore mutex = 1; 
int waiting = 0; 

void barber(void)  { 
while (TRUE) { 

down(&customers); 
down(&mutex); 
waiting = waiting - 1; 
up(&barber); 
up(&mutex); 
cut_hair(); 
} 

}   

void customer(void)  { 
down(&mutex); 
if (waiting < CHAIRS) {  

waiting = waiting + 1; 
up(&customers); 
up(&mutex); 
down(&barber); 
get_haircut();  } 

else { 
up(&mutex);

} 
}
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When the barber shows up for work in the morning, 
he executes the procedure barber, causing him to 
block on the semaphore customers  because it is 
initially 0. The barber then goes to sleep. He  stays 
asleep until the first customer shows up. When a 
customer arrives, he executes customer, starting by 
acquiring mutex to enter a  critical region. If another 
customer enters shortly thereafter, the second one will 
no be  able to do anything until the first one has 
released mutex. 
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5.3 The Sleeping Barber Problem

The customer then checks to see if the number of 
waiting customers is less than the number of chairs. If 
not, he  releases mutex and leaves without a haircut. 
If there is an available chair, the customer increments 
the integer variable, waiting. Then he does an up on 
the semaphore customers, thus waking up the barber. 
At this  point, the customer and the barber are both 
awake. When the customer releases mutex,  the 
barber grabs it, does some housekeeping, and begins 
the haircut.
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5.3 The Sleeping Barber Problem

Four threads are involved: an agent and three 
smokers. To make a cigarette, the ingredients are 
tobacco, paper, and matches. The smokers loop 
forever, first waiting for ingredients, then making and 
smoking cigarettes. We assume that the agent has 
infinite supply of all three ingredients, and each 
smoker has infinite supply of one of the ingredients; 
that is, one smoker has matches, another has paper, 
and the third has tobacco.
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5.4 The Cigarette Smokers

The agent repeatedly chooses two different 
ingredients at random and makes them available to 
the smokers. Depending on which ingredients are 
chosen, the smoker with the complementary ingredient 
should pick up both resources and proceed. For 
example, if the agent puts out tobacco and paper, the 
smoker with the matches should pick up both 
ingredients, make a cigarette, and then signal the 
agent.
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5.4 The Cigarette Smokers

The agent uses the following semaphores:
binary semaphore agentSem = 1;

semaphore tobacco = 0;

semaphore paper =  0;

semaphore match =  0;

The agent is actually made up of three concurrent 
threads, Agent A, Agent B and Agent C. Each one 
does a down on agentSem; each time agentSem is 
signaled, one of the Agents wakes up and provides 
ingredients by doing an up on two semaphores.
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5.4 The Cigarette Smokers

void agent_A() {
down(agentSem);
up(tobacco);
up(paper); }

void Agent_B() {
down(agentSem);
up(paper);
up(match); }

void Agent_C() {
down(agentSem);
up(tobacco);
up(match); }

void smoker_matches() {
down(tobacco);
down(paper);
up(agentSem);  }

void smoker_tobacco () {
down(paper);
down(match);
up(agentSem); }

void smoker_paper () {
down(match);
down(tobacco);
up(agentSem); }
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What’s wrong with this solution? The problem with this 
solution is the possibility of deadlock. 

Imagine that when there was noting on the table, the 
agent_A puts out tobacco and paper. Just after 
smoker_matches used the last tobacco, scheduler 
changes into smoker_tobacco. Unfortunately it uses 
the last paper on the table and it leads a DEADLOCK! 
Four processes must wait forever.
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5.4 The Cigarette Smokers

The three smoker processes will make a cigarette and 
smoke it. If they can't make a cigarette, then they will 
go to sleep. The agent process will place two items on 
the table, and wake up the appropriate smoker, and 
then go to sleep. 

The smoker immediately sleeps. When the agent puts 
the two items on the table, then the agent will wake 
up the appropriate smoker. The smoker will then grab 
the items, and wake the agent.
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5.4 The Cigarette Smokers

While the smoker is smoking, the agent can place two 
items on the table, and wake a different smoker. The 
agent sleeps immediately after placing the items out. 
This is something like the producer-consumer problem 
except the producer can only produce 1 item 
(although a choice of 3 kinds of items) at a time.
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5.4 The Cigarette Smokers

The variables and semaphores are:
semaphore tobacco = 0; //counter

semaphore paper = 0;   //counter

semaphore match = 0;   //counter

binary semaphore tobaccoSem = 0;

binary semaphore paperSem = 0;

binary semaphore matchSem = 0;

binary semaphore mutex = 1;
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5.4 The Cigarette Smokers
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5.4 The Cigarette Smokers

void agent() {
while(TRUE) {

down(mutex);
randNum = rand(3); 
if (randNum == 1) {

up(tobacco);
up(paper);
up(matchSem);
} 

elseif (randNum == 2) {
up(tobacco);
up(match);
up(paperSem);
}

else {
up(match);
up(paper);
up(tobaccoSem);
}

…
up(mutex);
down(agentSem);

}

void smoker_tobacco() 
{
while(TRUE) {

down(tobaccoSem);
down(mutex);
down(match);
down(paper);
makeCigarette();
up(agentSem);
up(mutex);
Smoke();

}


