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OPERATING SYSTEMS

SCHEDULING

When a computer is multi-programmed, it frequently 
has multiple processes or threads (in the ready state) 
competing for the CPU. If only one CPU is available, a 
choice has to be made which process to run next. The 
part of the operating system that makes the choice is 
called the scheduler, and the algorithm it uses is called 
the scheduling algorithm.
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6 Scheduling

In personal computers, there are two situations for 
scheduling. First, most of the time there is only one 
active process. For example, an user entering a 
document on a word processor is unlikely to be 
simultaneously compiling a program in the 
background. When the user types a command to the 
word processor, the scheduler does not have to do 
much work to figure out which process to run the word 
processor is the only candidate.
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6.1 Introduction to Scheduling

Second, since the CPU is not a scarce resource, even 
compilations (a major sink of CPU cycles in the past) 
take just a few seconds in most cases nowadays. Even 
when two programs are actually running at once, such 
as a word processor and a spreadsheet, it hardly 
matters which goes first since the user is probably 
waiting for both of them to finish. As a consequence, 
scheduling does not matter much on simple PCs.
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6.1 Introduction to Scheduling

When we turn to networked servers, scheduling 
matters again since multiple processes often do 
compete for the CPU. For example, when the CPU has 
to choose between running a process that gathers the 
daily statistics and one that serves user requests, the 
users will be a lot happier if the latter gets first at the 
CPU.
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6.1 Introduction to Scheduling

In addition, the scheduler has to worry about making 
efficient use of the CPU because process switching is 
expensive. To start with, a switch from user mode to 
kernel mode must occur. Then the state of the current 
process must be saved for reloading later. Next 
another process should be selected by running the 
scheduling algorithm. Finally, the new process must be 
started. Overall, doing too many process switches per 
second can cause spending a substantial amount of 
CPU time. 
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2

A process mostly alternates computing and I/O 
requests. Typically the CPU runs for a while without 
stopping, then a system call is made to access a file. 
When the system call completes, the CPU computes 
again until it needs data. Note that some I/O 
activities count as computing. For example, when the 
CPU copies bits to a video RAM to update the screen, 
it is computing, not doing I/O, because the CPU is in 
use. I/O in this sense is when a process enters the 
blocked state waiting for an external device to 
complete its work.
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6.1.1 Process Behavior
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6.1.1 Process Behavior

Bursts of CPU usage alternate with periods of I/O wait 

(a) a CPU-bound process       (b) an I/O bound process

The process in (a) spend most of its time computing 
(called compute-bound), while other in (b) spend most 
of its time waiting for I/O (called I/O-bound). Note 
that the key factor is the length of the CPU burst, not 
the length of the I/O burst. I/O bound processes are 
I/O bound because they do not compute much 
between I/O requests, not because they have 
especially long I/O requests. 
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6.1.1 Process Behavior

As CPUs get faster, processes tend to get more I/O 
bound. This effect occurs because CPUs are improving 
much faster than disks. As a consequence, the 
scheduling of I/O-bound processes is likely to become 
a more important subject in the future. The basic idea 
here is that if an I/O-bound process wants to run, it 
should get a chance quickly so that it can issue its disk 
request and keep the disk busy.
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6.1.1 Process Behavior

A key issue is when to make scheduling decisions:

First, when a new process is created, a decision needs 
to be made whether to run the parent process or the 
child process. Since both processes are in ready state, 
the scheduler can choose to run one of them next. 

Second, a scheduling decision must-be made when a 
process exits. So some other processes must be chosen 
from the set of ready processes.
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6.1.2 When to Schedule

Third, when a process blocks on I/O, another process 
has to be selected to run. Sometimes the reason for 
blocking may play a role in the choice. For example, 
if A is an important process and it is waiting for B to 
exit its critical region, letting B run next will allow it to 
exit its critical region and thus let A continue. The 
trouble, however, is that the scheduler generally does 
not have the necessary information to take this 
dependency into account.
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6.1.2 When to Schedule
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Fourth, when an I/O interrupt occurs, a scheduling 
decision may be made. If the interrupt came from an 
I/O device that has now completed its work, some 
process that was blocked waiting for the I/O may now 
be ready to run. It is up to the scheduler to decide 
whether to run the newly ready process, the process 
that was running at the time of the interrupt, or some 
third process.
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6.1.2 When to Schedule

If a hardware clock provides periodic interrupts at a 
frequency (like 60 Hz), a scheduling decision can be 
made at each clock interrupt or at every k-th clock 
interrupt. Scheduling algorithms can be divided into 
two categories with respect to how they deal with 
clock interrupts: 

� preemptive scheduling algorithms

� non-preemptive scheduling algorithms
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6.1.2 When to Schedule

A non-preemptive scheduling algorithm picks a 
process to run and then just lets it run until it blocks 
(either on I/O or waiting for another process) or until 
it voluntarily releases the CPU. Even if it runs for hours, 
it will not be forcibly suspended. In fact, no scheduling 
decisions are made during clock interrupts. After clock 
interrupt processing has been completed, the process 
that was running before the interrupt is resumed, 
unless a higher-priority process was waiting for a now 
satisfied timeout.
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6.1.2 When to Schedule

In contrast, a preemptive scheduling algorithm picks a 
process and lets it run for a maximum of some fixed 
time. If it is still running at the end of the time interval, 
it is suspended and the scheduler picks another 
process to run (if one is available). Doing preemptive 
scheduling requires having a clock interrupt occur at 
the end of the time interval to give control of the CPU 
back to the scheduler. If no clock is available non-
preemptive scheduling is the only option.
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6.1.2 When to Schedule

Different kinds of operating systems have different 
goals. In other words, what the scheduler should 
optimize for is not the same in all systems. Three 
environments worth distinguishing are

1. Batch

2. Interactive

3. Real time
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6.1.3 Categories of Scheduling Algorithms

Batch systems are still in widespread use in the 
business world for doing some periodic tasks. Because 
there are no users waiting in batch systems, 
preemptive or non-preemptive algorithms with long 
time periods for each process, are often acceptable. 
This approach reduces process switches and thus 
improves performance.
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In an environment with interactive users, preemption is 
essential to keep one process from hogging the CPU 
and denying service to the others. Even if no process 
intentionally ran forever, one process might shut out all 
the others indefinitely due to a program bug. 
Preemption is needed to prevent this behavior. 
Servers also fall into this category, since they normally 
serve multiple users, all of whom are in a big hurry.
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6.1.3 Categories of Scheduling Algorithms

In systems with real-time constraints, preemption is, 
oddly enough, sometimes not needed because the 
processes know that they may not run for long periods 
of time and usually do their work and block quickly. 
The difference with interactive systems is that real-
time systems run only programs that are designed to 
advance the application at hand. Interactive systems 
are general purpose and may run arbitrary programs 
that are not cooperative or even malicious (harmful).
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6.1.3 Categories of Scheduling Algorithms

All systems
Fairness - giving each process a fair share of the CPU

Policy enforcement - seeing that stated policy is carried out

Balance - keeping all parts of the system busy

Batch systems
Throughput-maximize jobs per hour

Turnaround time-minimize time between submission and termination

CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly

Real-time systems
Meeting deadlines - avoid losing data
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6.1.4 Scheduling Algorithm Goals

The fairness is an important concept for comparable 
processes. Giving one process much more CPU time 
than an equivalent one is not fair. Of course, different 
categories of processes may be treated differently. 
Think of safety control and doing the payroll at a 
nuclear reactor's computer center. Sometimes fairness 
is related to the system's policies. If the local policy is 
that safety control processes get to run whenever they 
want to, even if it means the payroll is 30 sec late, the 
scheduler has to make sure this policy is enforced.
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6.1.4 Scheduling Algorithm Goals

Another general goal is keeping whole system busy. If 
the CPU and I/O devices can be kept running at the 
same time, more work gets done per second. Running 
CPU-bound and I/O-bound processes in memory 
together is a better idea than running all the CPU-
bound jobs first and then all the I/O-bound jobs. If 
the latter strategy is used, the disks are idle while all 
processes are fighting for the CPU, or the CPU is idle 
in otherwise. Better to keep the whole system running 
at once by a careful mix of processes.
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6.1.4 Scheduling Algorithm Goals

The managers of large computer centers that run 
many batch jobs typically look at three metrics to see 
how well their systems are performing: throughput, 
turnaround time, and CPU utilization. Throughput is the 
number of jobs per hour that the system completes. 
Turnaround time is the statistically average time from 
the moment that a batch job is submitted until the 
moment it is completed. It measures how long the 
average user has to wait for the output.

24

6.1.4 Scheduling Algorithm Goals



5

A scheduling, algorithm that maximizes throughput 
may not necessarily minimize turnaround time. For 
example, given a mix of short jobs and long jobs, a 
scheduler that always ran short jobs and never ran 
long jobs might achieve an excellent throughput (many 
short jobs per hour) but at the expense of a terrible 
turnaround time for the long jobs. If short jobs kept 
arriving at a fairly steady rate, the long jobs might 
never run, making the mean turnaround time infinite 
while achieving a high throughput.
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6.1.4 Scheduling Algorithm Goals

CPU utilization is often used as a metric on batch 
systems, actually though it is not such a good metric. 
What really matters is how many jobs per hour come 
out of the system (throughput) and how long it takes to 
get a job back (turnaround time). On the other hand, 
knowing when the CPU utilization is approaching 
100% is useful for knowing when it is time to get more 
computing power. 
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6.1.4 Scheduling Algorithm Goals

For interactive systems, different goals apply. The 
most important one is to minimize response time, that 
is, the time between issuing a command and getting 
the result. On a personal computer where a 
background process is running, a user request to start 
a program or open a file should take precedence 
over the background work. Performing all interactive 
requests first will be perceived as good service.
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6.1.4 Scheduling Algorithm Goals

Real-time systems are characterized by having 
deadlines that must be met. For example, if a 
computer is controlling a device that produces data at 
a regular rate, failure to run the data-collection 
process on time may result in lost data. Thus the 
foremost need in a real-time system is meeting most 
deadlines.
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6.1.4 Scheduling Algorithm Goals

Now we will look at some algorithms used in batch 
systems:

1. First-Come First-Served

2. Shortest Job First

3. Shortest Remaining Time Next
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6.2 Scheduling in Batch Systems

In non-preemptive first-come first-served, there is a 
single queue of ready processes. When the first job 
enters the system from the outside at the start, it is 
started and allowed to run as long as it wants to. As 
other jobs come in, they are put onto the end of the 
queue. When the running process blocks, the first 
process on the queue is run next. When a blocked 
process becomes ready, like a newly arrived job, it is 
put on the end of the queue.
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6.2.1 First-Come First-Served
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The great strength of this algorithm is that it is easy to 
understand and equally easy to program. It is also 
fair in the same sense. With this algorithm, a single 
linked list keeps track of all ready processes. Picking 
a process to run just requires removing one from the 
front of the queue. Adding a new job or unblocked 
process just requires attaching it to the end of the 
queue.
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6.2.1 First-Come First-Served

First-come first-served also has a disadvantage. 
Suppose that there is one compute-bound process that 
runs for 1 sec at a time and many l/O-bound 
processes that use little CPU time but each have to 
perform 1000 disk reads. The compute-bound process 
runs for 1 sec, then it reads a disk block. All the l/O 
processes now run and start disk reads. When the 
compute-bound process gets its disk block, it runs for 
another 1 sec, followed by all the l/O-bound 
processes in quick succession.

32

6.2.1 First-Come First-Served

The net result is that each l/O-bound process gets to 
read 1 block per second and will take 1000 sec to 
finish. With a scheduling algorithm that preempted 
the compute-bound process every 10 msec, the l/O-
bound processes would finish in 10 sec instead of 
1000 sec, and without slowing down the compute-
bound process very much.
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6.2.1 First-Come First-Served

For example, people in an insurance company can 
predict how long it will take to run a batch of 1000 
requests, since similar work is done every day. When 
several equally important jobs are sitting in the input 
queue, the scheduler picks the shortest job first. In 
figure, we find four jobs A, B, C, and D with run times 
of 8, 4, 4, and 4 minutes, respectively. By running 
them in that order, the turnaround time for A is 8 
minutes, for B is 12 minutes, for C is 16 minutes, and 
for D is 20 minutes for an average of 14 minutes.
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6.2.2 Shortest Job First
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6.2.2 Shortest Job First

An example of shortest job first scheduling

Consider running these four jobs using shortest job first 
as in Fig.(b). The turnaround times are now 4, 8, 12, 
and 20 minutes for an average of 11 minutes. The 
case of four jobs are with run times of a, b, c, and d, 
respectively. The first job finishes at time a, the second 
finishes at time a + b, and so on. The mean 
turnaround time is (4a + 3b + 2c + d)/4. It is clear 
that a contributes more to the average than the other 
times, so it should be the shortest job, with b next, then 
c, and finally d as the longest as it affects only its own 
turnaround time.
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6.2.2 Shortest Job First
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A preemptive version of shortest job first is shortest 
remaining time next. With this algorithm, the scheduler 
always chooses the process whose remaining run time 
is the shortest. Again here, the run time has to be 
known in advance. When a new job arrives, its total 
time is compared to the current process' remaining 
time. If the new job needs less time to finish than the 
current process, the current process is suspended and 
the new job started. This scheme allows new short jobs 
to get good service.
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6.2.3 Shortest Remaining Time Next

The algorithms that can be used in interactive systems;

1. Round-Robin Scheduling

2. Priority Scheduling

3. Shortest Process Next

4. Guaranteed Scheduling

5. Lottery Scheduling

6. Fair-Share Scheduling
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6.3 Scheduling in Interactive Systems

One of the oldest, simplest, fairest, and most widely 
used algorithms is Round Robin. Each process is 
assigned a time interval, called its quantum, during 
which it is allowed to run. When the process uses up its 
quantum, it is put on the end of the list and the CPU is 
given to another process. If the process has blocked or 
finished before the quantum has elapsed, the CPU 
switching is done. All the scheduler needs to do is 
maintain a list of runnable processes. 
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6.3.1 Round-Robin Scheduling
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6.3.1 Round-Robin Scheduling

(a) list of runnable processes   (b) list of runnable processes after B uses up 

its quantum

The only interesting issue with round robin is the length 
of the quantum. Switching from one process to another 
requires a certain amount of time for saving, loading, 
and so on. Suppose that this process switch takes 1 
msec. Also suppose that the quantum is set at 4 msec. 
With these parameters, after doing 4 msec of useful 
work, the CPU will have to waste 1 msec on process 
switching. Thus 20% of the CPU time will be thrown 
away on administrative overhead.
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6.3.1 Round-Robin Scheduling

To improve the CPU efficiency, we could set the 
quantum to, say, 100 msec. Now the wasted time is 
only 1 %. But consider what happens on a server 
system if 50 requests come in within a very short time 
interval and with widely varying CPU requirements. 
Fifty processes will be put on the list of runnable 
processes. The first one will start, the second one may 
not start in 100 msec. The unlucky last one may have 
to wait 5 sec before getting a chance. With a short 
quantum they would have gotten better service.
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6.3.1 Round-Robin Scheduling
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The conclusion can be formulated as follows: 

setting the quantum too short causes too many process 
switches and lowers the CPU efficiency, but setting it 
too long may cause poor response to short interactive 
requests. 

A quantum around 20-50 msec is often a reasonable 
compromise.
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6.3.1 Round-Robin Scheduling

Round-robin scheduling makes the implicit assumption 
that all processes are equally important. Frequently, 
the people who own and operate multiuser computers 
have different ideas on that subject. The need to take 
external factors into account leads to priority 
scheduling. 

The basic idea is simple: each process is assigned a 
priority, and the runnable process with the highest 
priority is allowed to run.
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6.3.2 Priority Scheduling

To prevent high-priority processes from running 
indefinitely, the scheduler may decrease the priority 
of the currently running process at each clock tick. If 
this action causes its priority to drop below that of the 
next highest process, a process switch occurs. 
Alternatively, each process may be assigned a 
maximum time quantum that it is allowed to run. When 
this quantum is used up, the next highest priority 
process is given a chance to run.
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6.3.2 Priority Scheduling
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6.3.2 Priority Scheduling

A scheduling algorithm with four priority classes

It is often convenient to group processes into priority 
classes and use priority scheduling among the classes 
but round-robin scheduling within each class. In a 
system with four priority classes (as in figure), the 
scheduling algorithm is as follows: as long as there are 
runnable processes in priority class 4, just run each 
one for one quantum, round-robin fashion, and never 
bother with lower-priority classes. If priority class 4 is 
empty, then run the class 3 processes round robin. If 
priorities are not adjusted occasionally, lower priority 
classes may all starve to death.
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6.3.2 Priority Scheduling

Because shortest job first always produces the 
minimum average response time for batch systems, it 
would be nice if it could be used for interactive 
processes as well. Interactive processes generally 
follow the pattern of wait for command, execute 
command, wait for command, execute command, and 
so on. If we regard the execution of each command as 
a separate "job," then we could minimize overall 
response time by running the shortest one first. The 
only problem is figuring out which of the currently 
runnable processes is the shortest one.

48

6.3.3 Shortest Process Next
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One approach is to make estimates based on past 
behavior and run the process with the shortest 
estimated running time. Suppose that the estimated 
time per command for some terminal is T0. Now 
suppose its next run is measured to be T1. We could 
update our estimate by taking a weighted sum of 
these two numbers T2=aT0 + (1-a) T1. Through the 
choice of “a” we can decide to have the estimation 
process forget old runs quickly, or remember them for 
a long time. After three new runs, the weight of T0 in 
the new estimate has dropped to a³.
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6.3.3 Shortest Process Next

The technique of estimating the next value in a series 
by taking the weighted average of the current 
measured value and the previous estimate is 
sometimes called aging.

50

6.3.3 Shortest Process Next

Another approach to scheduling is to make real 
promises to the users about performance. One 
promise is this: If there are n users logged in while you 
are working, you will receive about 1/n of the CPU 
power. Similarly, on a single-user system with n 
processes running, all things being equal, each one 
should get 1/n of the CPU cycles. That seems fair 
enough.
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6.3.4 Guaranteed Scheduling

In lottery scheduling, the idea is to give processes 
lottery tickets for system resources such as CPU time. 
Whenever a scheduling decision has to be made, a 
lottery ticket is chosen at random, and the process 
holding that ticket gets the resource. When applied to 
CPU scheduling, the system might hold a lottery 50 
times a second, with each winner getting 20 msec of 
CPU time as a prize.
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6.3.5 Lottery Scheduling

Assume that if User1 starts up 9 processes and User2 
starts up 1 process, with round robin or equal 
priorities, User1 will get 90% of the CPU and User2 
will get only 10% of it. To prevent this situation, some 
systems take into account who owns a process before 
scheduling it.
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6.3.6 Fair-Share Scheduling

Consider a system with two users, each of which has 
been promised 50% of the CPU. User1 has four 
processes, A, B, C, and D, and User2 has only 1 
process, E. If round-robin scheduling is used, a possible 
scheduling sequence is

AEBECEDEAEBECEDE...

If User1 is entitled to twice as much CPU time as 
User2, we might get

ABECDEABECDE…
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6.3.6 Fair-Share Scheduling
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A real-time system is one in which time plays an 
essential role. For example, the computer in a compact 
disc player gets the bits as they come off the drive 
and must convert them into music within a very tight 
time interval. If the calculation takes too long, the 
music will sound strange. Having the right answer but 
too late is often just as bad as not having it at all.
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6.4 Scheduling in Real-Time Systems

Real-time systems categorized as hard or soft. In hard 
real-time, absolute deadlines must be met, in soft real 
time, missing an occasional deadline is undesirable but 
nevertheless tolerable. 

For a real-time system, the events can be categorized 
as periodic (occurring at regular intervals) or 
aperiodic (occurring unpredictably). 
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6.4 Scheduling in Real-Time Systems

Real-time scheduling algorithms can be static or 
dynamic. The former make their scheduling decisions 
before the system starts running. The latter make their 
scheduling decisions at run time. Static scheduling only 
works when there is perfect information available in 
advance about the work to be done and the 
deadlines that have to be met. Dynamic scheduling 
algorithms do not have these restrictions.
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6.4 Scheduling in Real-Time Systems

Sometimes one process has many children running 
under its control. For example, a database system 
process may have many children working on a request 
or performing a specific function. The main process 
has a task to find which child is the most important 
and which the least. Unfortunately, none of the 
schedulers discussed above accept any input from user 
processes about scheduling decisions. As a result, the 
scheduler rarely makes the best choice.
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6.5 Policy versus Mechanism

The scheduling algorithm is parameterized in some 
way, but the parameters can be filled in by user 
processes. For example, suppose that the kernel uses a 
priority-scheduling algorithm but provides a system 
call by which a process can set and change the 
priorities of its children. In this way the parent can 
control in detail how its children are scheduled, even 
though it itself does not do the scheduling. Here the 
mechanism is in the kernel but policy is set by a user 
process.
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6.5 Policy versus Mechanism

In multi-thread systems, we have two levels of 
parallelism present: processes and threads. 
Scheduling in such systems differs substantially 
depending on whether user-level threads or kernel-
level threads are supported.
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6.6 Thread Scheduling
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Let us consider user-level threads first. Since the kernel 
is not aware of the existence of threads, it operates 
as it always does, picking a process, say, A, and 
giving A control for its quantum. The thread scheduler 
inside A decides which thread to run, say A1. Since 
there are no clock interrupts to multi-program threads, 
this thread may continue running as long as it wants to. 
If it uses up the process entire quantum, the kernel will 
select another process to run.
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6.6 Thread Scheduling

Now consider the case that A's threads have relatively 
little work to do per CPU burst, for example, 5msec of 
work within a 50msec quantum. Consequently each 
one runs for a little while, then yields the CPU back to 
the thread scheduler. This might lead to the sequence

A1, A2, A3, A1, A2, A3, A1, A2, A3, A1 

before the kernel switches to process B.
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6.6 Thread Scheduling
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6.6 Thread Scheduling

Possible scheduling of user-level threads

(50-msec process quantum, threads run 5 msec/CPU burst)

The scheduling algorithm used by the run-time system 
can be any of the ones described above. In practice, 
round-robin scheduling and priority scheduling are 
most common. The only constraint is the absence of a 
clock to interrupt a thread that has run too long. 
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6.6 Thread Scheduling

Now consider the situation with kernel-level threads. 
Here the kernel picks a particular thread to run. It 
does not have to take into account which process the 
thread belongs to, but it can if it wants to. The thread 
is given a quantum and is forcibly suspended if it 
exceeds the quantum.
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6.6 Thread Scheduling
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6.6 Thread Scheduling

Possible scheduling of kernel-level threads

(50-msec process quantum, threads run 5 msec/CPU burst)
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A major difference between user-level threads and 
kernel-level threads is the performance. Doing a 
thread switch with user-level threads is very simple in 
contrast to kernel-level. 

On the other hand, with kernel-level threads, having a 
thread block on I/O does not suspend the entire 
process as it does with user-level threads.
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6.6 Thread Scheduling

Since the kernel knows that switching from a thread in 
process A to a thread in process B is more expensive 
than running a second thread in process A (due to 
having to change the memory map and having the 
memory cache spoiled), it can take this information 
into account when making a decision.
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6.6 Thread Scheduling

User-level threads can employ an application-specific 
thread scheduler. 

Consider a Web server that a worker thread has just 
blocked and the dispatcher thread and two worker 
threads are ready. The run-time system can easily 
pick the dispatcher to run next, so that it can start 
another worker running. This strategy maximizes the 
amount of parallelism in an environment where 
workers frequently block on disk I/O. 
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6.6 Thread Scheduling


