
1

OPERATING SYSTEMS

SCHEDULING

When a computer is multi-programmed, it frequently
has multiple processes or threads (in the ready state)
competing for the CPU. If only one CPU is available, a
choice has to be made which process to run next. The
part of the operating system that makes the choice is
called the scheduler, and the algorithm it uses is called
the scheduling algorithm.

2

6 Scheduling

In personal computers, there are two situations for
scheduling. First, most of the time there is only one
active process. For example, an user entering a
document on a word processor is unlikely to be
simultaneously compiling a program in the
background. When the user types a command to the
word processor, the scheduler does not have to do
much work to figure out which process to run the word
processor is the only candidate.

3

6.1 Introduction to Scheduling

Second, since the CPU is not a scarce resource, even
compilations (a major sink of CPU cycles in the past)
take just a few seconds in most cases nowadays. Even
when two programs are actually running at once, such
as a word processor and a spreadsheet, it hardly
matters which goes first since the user is probably
waiting for both of them to finish. As a consequence,
scheduling does not matter much on simple PCs.

4

6.1 Introduction to Scheduling

When we turn to networked servers, scheduling
matters again since multiple processes often do
compete for the CPU. For example, when the CPU has
to choose between running a process that gathers the
daily statistics and one that serves user requests, the
users will be a lot happier if the latter gets first at the
CPU.

5

6.1 Introduction to Scheduling

In addition, the scheduler has to worry about making
efficient use of the CPU because process switching is
expensive. To start with, a switch from user mode to
kernel mode must occur. Then the state of the current
process must be saved for reloading later. Next
another process should be selected by running the
scheduling algorithm. Finally, the new process must be
started. Overall, doing too many process switches per
second can cause spending a substantial amount of
CPU time.

6

6.1 Introduction to Scheduling

2

A process mostly alternates computing and I/O
requests. Typically the CPU runs for a while without
stopping, then a system call is made to access a file.
When the system call completes, the CPU computes
again until it needs data. Note that some I/O
activities count as computing. For example, when the
CPU copies bits to a video RAM to update the screen,
it is computing, not doing I/O, because the CPU is in
use. I/O in this sense is when a process enters the
blocked state waiting for an external device to
complete its work.

7

6.1.1 Process Behavior
8

6.1.1 Process Behavior

Bursts of CPU usage alternate with periods of I/O wait

(a) a CPU-bound process (b) an I/O bound process

The process in (a) spend most of its time computing
(called compute-bound), while other in (b) spend most
of its time waiting for I/O (called I/O-bound). Note
that the key factor is the length of the CPU burst, not
the length of the I/O burst. I/O bound processes are
I/O bound because they do not compute much
between I/O requests, not because they have
especially long I/O requests.

9

6.1.1 Process Behavior

As CPUs get faster, processes tend to get more I/O
bound. This effect occurs because CPUs are improving
much faster than disks. As a consequence, the
scheduling of I/O-bound processes is likely to become
a more important subject in the future. The basic idea
here is that if an I/O-bound process wants to run, it
should get a chance quickly so that it can issue its disk
request and keep the disk busy.

10

6.1.1 Process Behavior

A key issue is when to make scheduling decisions:

First, when a new process is created, a decision needs
to be made whether to run the parent process or the
child process. Since both processes are in ready state,
the scheduler can choose to run one of them next.

Second, a scheduling decision must-be made when a
process exits. So some other processes must be chosen
from the set of ready processes.

11

6.1.2 When to Schedule

Third, when a process blocks on I/O, another process
has to be selected to run. Sometimes the reason for
blocking may play a role in the choice. For example,
if A is an important process and it is waiting for B to
exit its critical region, letting B run next will allow it to
exit its critical region and thus let A continue. The
trouble, however, is that the scheduler generally does
not have the necessary information to take this
dependency into account.

12

6.1.2 When to Schedule

3

Fourth, when an I/O interrupt occurs, a scheduling
decision may be made. If the interrupt came from an
I/O device that has now completed its work, some
process that was blocked waiting for the I/O may now
be ready to run. It is up to the scheduler to decide
whether to run the newly ready process, the process
that was running at the time of the interrupt, or some
third process.

13

6.1.2 When to Schedule

If a hardware clock provides periodic interrupts at a
frequency (like 60 Hz), a scheduling decision can be
made at each clock interrupt or at every k-th clock
interrupt. Scheduling algorithms can be divided into
two categories with respect to how they deal with
clock interrupts:

� preemptive scheduling algorithms

� non-preemptive scheduling algorithms

14

6.1.2 When to Schedule

A non-preemptive scheduling algorithm picks a
process to run and then just lets it run until it blocks
(either on I/O or waiting for another process) or until
it voluntarily releases the CPU. Even if it runs for hours,
it will not be forcibly suspended. In fact, no scheduling
decisions are made during clock interrupts. After clock
interrupt processing has been completed, the process
that was running before the interrupt is resumed,
unless a higher-priority process was waiting for a now
satisfied timeout.

15

6.1.2 When to Schedule

In contrast, a preemptive scheduling algorithm picks a
process and lets it run for a maximum of some fixed
time. If it is still running at the end of the time interval,
it is suspended and the scheduler picks another
process to run (if one is available). Doing preemptive
scheduling requires having a clock interrupt occur at
the end of the time interval to give control of the CPU
back to the scheduler. If no clock is available non-
preemptive scheduling is the only option.

16

6.1.2 When to Schedule

Different kinds of operating systems have different
goals. In other words, what the scheduler should
optimize for is not the same in all systems. Three
environments worth distinguishing are

1. Batch

2. Interactive

3. Real time

17

6.1.3 Categories of Scheduling Algorithms

Batch systems are still in widespread use in the
business world for doing some periodic tasks. Because
there are no users waiting in batch systems,
preemptive or non-preemptive algorithms with long
time periods for each process, are often acceptable.
This approach reduces process switches and thus
improves performance.

18

6.1.3 Categories of Scheduling Algorithms

4

In an environment with interactive users, preemption is
essential to keep one process from hogging the CPU
and denying service to the others. Even if no process
intentionally ran forever, one process might shut out all
the others indefinitely due to a program bug.
Preemption is needed to prevent this behavior.
Servers also fall into this category, since they normally
serve multiple users, all of whom are in a big hurry.

19

6.1.3 Categories of Scheduling Algorithms

In systems with real-time constraints, preemption is,
oddly enough, sometimes not needed because the
processes know that they may not run for long periods
of time and usually do their work and block quickly.
The difference with interactive systems is that real-
time systems run only programs that are designed to
advance the application at hand. Interactive systems
are general purpose and may run arbitrary programs
that are not cooperative or even malicious (harmful).

20

6.1.3 Categories of Scheduling Algorithms

All systems
Fairness - giving each process a fair share of the CPU

Policy enforcement - seeing that stated policy is carried out

Balance - keeping all parts of the system busy

Batch systems
Throughput-maximize jobs per hour

Turnaround time-minimize time between submission and termination

CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly

Real-time systems
Meeting deadlines - avoid losing data

21

6.1.4 Scheduling Algorithm Goals

The fairness is an important concept for comparable
processes. Giving one process much more CPU time
than an equivalent one is not fair. Of course, different
categories of processes may be treated differently.
Think of safety control and doing the payroll at a
nuclear reactor's computer center. Sometimes fairness
is related to the system's policies. If the local policy is
that safety control processes get to run whenever they
want to, even if it means the payroll is 30 sec late, the
scheduler has to make sure this policy is enforced.

22

6.1.4 Scheduling Algorithm Goals

Another general goal is keeping whole system busy. If
the CPU and I/O devices can be kept running at the
same time, more work gets done per second. Running
CPU-bound and I/O-bound processes in memory
together is a better idea than running all the CPU-
bound jobs first and then all the I/O-bound jobs. If
the latter strategy is used, the disks are idle while all
processes are fighting for the CPU, or the CPU is idle
in otherwise. Better to keep the whole system running
at once by a careful mix of processes.

23

6.1.4 Scheduling Algorithm Goals

The managers of large computer centers that run
many batch jobs typically look at three metrics to see
how well their systems are performing: throughput,
turnaround time, and CPU utilization. Throughput is the
number of jobs per hour that the system completes.
Turnaround time is the statistically average time from
the moment that a batch job is submitted until the
moment it is completed. It measures how long the
average user has to wait for the output.

24

6.1.4 Scheduling Algorithm Goals

5

A scheduling, algorithm that maximizes throughput
may not necessarily minimize turnaround time. For
example, given a mix of short jobs and long jobs, a
scheduler that always ran short jobs and never ran
long jobs might achieve an excellent throughput (many
short jobs per hour) but at the expense of a terrible
turnaround time for the long jobs. If short jobs kept
arriving at a fairly steady rate, the long jobs might
never run, making the mean turnaround time infinite
while achieving a high throughput.

25

6.1.4 Scheduling Algorithm Goals

CPU utilization is often used as a metric on batch
systems, actually though it is not such a good metric.
What really matters is how many jobs per hour come
out of the system (throughput) and how long it takes to
get a job back (turnaround time). On the other hand,
knowing when the CPU utilization is approaching
100% is useful for knowing when it is time to get more
computing power.

26

6.1.4 Scheduling Algorithm Goals

For interactive systems, different goals apply. The
most important one is to minimize response time, that
is, the time between issuing a command and getting
the result. On a personal computer where a
background process is running, a user request to start
a program or open a file should take precedence
over the background work. Performing all interactive
requests first will be perceived as good service.

27

6.1.4 Scheduling Algorithm Goals

Real-time systems are characterized by having
deadlines that must be met. For example, if a
computer is controlling a device that produces data at
a regular rate, failure to run the data-collection
process on time may result in lost data. Thus the
foremost need in a real-time system is meeting most
deadlines.

28

6.1.4 Scheduling Algorithm Goals

Now we will look at some algorithms used in batch
systems:

1. First-Come First-Served

2. Shortest Job First

3. Shortest Remaining Time Next

29

6.2 Scheduling in Batch Systems

In non-preemptive first-come first-served, there is a
single queue of ready processes. When the first job
enters the system from the outside at the start, it is
started and allowed to run as long as it wants to. As
other jobs come in, they are put onto the end of the
queue. When the running process blocks, the first
process on the queue is run next. When a blocked
process becomes ready, like a newly arrived job, it is
put on the end of the queue.

30

6.2.1 First-Come First-Served

6

The great strength of this algorithm is that it is easy to
understand and equally easy to program. It is also
fair in the same sense. With this algorithm, a single
linked list keeps track of all ready processes. Picking
a process to run just requires removing one from the
front of the queue. Adding a new job or unblocked
process just requires attaching it to the end of the
queue.

31

6.2.1 First-Come First-Served

First-come first-served also has a disadvantage.
Suppose that there is one compute-bound process that
runs for 1 sec at a time and many l/O-bound
processes that use little CPU time but each have to
perform 1000 disk reads. The compute-bound process
runs for 1 sec, then it reads a disk block. All the l/O
processes now run and start disk reads. When the
compute-bound process gets its disk block, it runs for
another 1 sec, followed by all the l/O-bound
processes in quick succession.

32

6.2.1 First-Come First-Served

The net result is that each l/O-bound process gets to
read 1 block per second and will take 1000 sec to
finish. With a scheduling algorithm that preempted
the compute-bound process every 10 msec, the l/O-
bound processes would finish in 10 sec instead of
1000 sec, and without slowing down the compute-
bound process very much.

33

6.2.1 First-Come First-Served

For example, people in an insurance company can
predict how long it will take to run a batch of 1000
requests, since similar work is done every day. When
several equally important jobs are sitting in the input
queue, the scheduler picks the shortest job first. In
figure, we find four jobs A, B, C, and D with run times
of 8, 4, 4, and 4 minutes, respectively. By running
them in that order, the turnaround time for A is 8
minutes, for B is 12 minutes, for C is 16 minutes, and
for D is 20 minutes for an average of 14 minutes.

34

6.2.2 Shortest Job First

35

6.2.2 Shortest Job First

An example of shortest job first scheduling

Consider running these four jobs using shortest job first
as in Fig.(b). The turnaround times are now 4, 8, 12,
and 20 minutes for an average of 11 minutes. The
case of four jobs are with run times of a, b, c, and d,
respectively. The first job finishes at time a, the second
finishes at time a + b, and so on. The mean
turnaround time is (4a + 3b + 2c + d)/4. It is clear
that a contributes more to the average than the other
times, so it should be the shortest job, with b next, then
c, and finally d as the longest as it affects only its own
turnaround time.

36

6.2.2 Shortest Job First

7

A preemptive version of shortest job first is shortest
remaining time next. With this algorithm, the scheduler
always chooses the process whose remaining run time
is the shortest. Again here, the run time has to be
known in advance. When a new job arrives, its total
time is compared to the current process' remaining
time. If the new job needs less time to finish than the
current process, the current process is suspended and
the new job started. This scheme allows new short jobs
to get good service.

37

6.2.3 Shortest Remaining Time Next

The algorithms that can be used in interactive systems;

1. Round-Robin Scheduling

2. Priority Scheduling

3. Shortest Process Next

4. Guaranteed Scheduling

5. Lottery Scheduling

6. Fair-Share Scheduling

38

6.3 Scheduling in Interactive Systems

One of the oldest, simplest, fairest, and most widely
used algorithms is Round Robin. Each process is
assigned a time interval, called its quantum, during
which it is allowed to run. When the process uses up its
quantum, it is put on the end of the list and the CPU is
given to another process. If the process has blocked or
finished before the quantum has elapsed, the CPU
switching is done. All the scheduler needs to do is
maintain a list of runnable processes.

39

6.3.1 Round-Robin Scheduling
40

6.3.1 Round-Robin Scheduling

(a) list of runnable processes (b) list of runnable processes after B uses up

its quantum

The only interesting issue with round robin is the length
of the quantum. Switching from one process to another
requires a certain amount of time for saving, loading,
and so on. Suppose that this process switch takes 1
msec. Also suppose that the quantum is set at 4 msec.
With these parameters, after doing 4 msec of useful
work, the CPU will have to waste 1 msec on process
switching. Thus 20% of the CPU time will be thrown
away on administrative overhead.

41

6.3.1 Round-Robin Scheduling

To improve the CPU efficiency, we could set the
quantum to, say, 100 msec. Now the wasted time is
only 1 %. But consider what happens on a server
system if 50 requests come in within a very short time
interval and with widely varying CPU requirements.
Fifty processes will be put on the list of runnable
processes. The first one will start, the second one may
not start in 100 msec. The unlucky last one may have
to wait 5 sec before getting a chance. With a short
quantum they would have gotten better service.

42

6.3.1 Round-Robin Scheduling

8

The conclusion can be formulated as follows:

setting the quantum too short causes too many process
switches and lowers the CPU efficiency, but setting it
too long may cause poor response to short interactive
requests.

A quantum around 20-50 msec is often a reasonable
compromise.

43

6.3.1 Round-Robin Scheduling

Round-robin scheduling makes the implicit assumption
that all processes are equally important. Frequently,
the people who own and operate multiuser computers
have different ideas on that subject. The need to take
external factors into account leads to priority
scheduling.

The basic idea is simple: each process is assigned a
priority, and the runnable process with the highest
priority is allowed to run.

44

6.3.2 Priority Scheduling

To prevent high-priority processes from running
indefinitely, the scheduler may decrease the priority
of the currently running process at each clock tick. If
this action causes its priority to drop below that of the
next highest process, a process switch occurs.
Alternatively, each process may be assigned a
maximum time quantum that it is allowed to run. When
this quantum is used up, the next highest priority
process is given a chance to run.

45

6.3.2 Priority Scheduling
46

6.3.2 Priority Scheduling

A scheduling algorithm with four priority classes

It is often convenient to group processes into priority
classes and use priority scheduling among the classes
but round-robin scheduling within each class. In a
system with four priority classes (as in figure), the
scheduling algorithm is as follows: as long as there are
runnable processes in priority class 4, just run each
one for one quantum, round-robin fashion, and never
bother with lower-priority classes. If priority class 4 is
empty, then run the class 3 processes round robin. If
priorities are not adjusted occasionally, lower priority
classes may all starve to death.

47

6.3.2 Priority Scheduling

Because shortest job first always produces the
minimum average response time for batch systems, it
would be nice if it could be used for interactive
processes as well. Interactive processes generally
follow the pattern of wait for command, execute
command, wait for command, execute command, and
so on. If we regard the execution of each command as
a separate "job," then we could minimize overall
response time by running the shortest one first. The
only problem is figuring out which of the currently
runnable processes is the shortest one.

48

6.3.3 Shortest Process Next

9

One approach is to make estimates based on past
behavior and run the process with the shortest
estimated running time. Suppose that the estimated
time per command for some terminal is T0. Now
suppose its next run is measured to be T1. We could
update our estimate by taking a weighted sum of
these two numbers T2=aT0 + (1-a) T1. Through the
choice of “a” we can decide to have the estimation
process forget old runs quickly, or remember them for
a long time. After three new runs, the weight of T0 in
the new estimate has dropped to a³.

49

6.3.3 Shortest Process Next

The technique of estimating the next value in a series
by taking the weighted average of the current
measured value and the previous estimate is
sometimes called aging.

50

6.3.3 Shortest Process Next

Another approach to scheduling is to make real
promises to the users about performance. One
promise is this: If there are n users logged in while you
are working, you will receive about 1/n of the CPU
power. Similarly, on a single-user system with n
processes running, all things being equal, each one
should get 1/n of the CPU cycles. That seems fair
enough.

51

6.3.4 Guaranteed Scheduling

In lottery scheduling, the idea is to give processes
lottery tickets for system resources such as CPU time.
Whenever a scheduling decision has to be made, a
lottery ticket is chosen at random, and the process
holding that ticket gets the resource. When applied to
CPU scheduling, the system might hold a lottery 50
times a second, with each winner getting 20 msec of
CPU time as a prize.

52

6.3.5 Lottery Scheduling

Assume that if User1 starts up 9 processes and User2
starts up 1 process, with round robin or equal
priorities, User1 will get 90% of the CPU and User2
will get only 10% of it. To prevent this situation, some
systems take into account who owns a process before
scheduling it.

53

6.3.6 Fair-Share Scheduling

Consider a system with two users, each of which has
been promised 50% of the CPU. User1 has four
processes, A, B, C, and D, and User2 has only 1
process, E. If round-robin scheduling is used, a possible
scheduling sequence is

AEBECEDEAEBECEDE...

If User1 is entitled to twice as much CPU time as
User2, we might get

ABECDEABECDE…

54

6.3.6 Fair-Share Scheduling

10

A real-time system is one in which time plays an
essential role. For example, the computer in a compact
disc player gets the bits as they come off the drive
and must convert them into music within a very tight
time interval. If the calculation takes too long, the
music will sound strange. Having the right answer but
too late is often just as bad as not having it at all.

55

6.4 Scheduling in Real-Time Systems

Real-time systems categorized as hard or soft. In hard
real-time, absolute deadlines must be met, in soft real
time, missing an occasional deadline is undesirable but
nevertheless tolerable.

For a real-time system, the events can be categorized
as periodic (occurring at regular intervals) or
aperiodic (occurring unpredictably).

56

6.4 Scheduling in Real-Time Systems

Real-time scheduling algorithms can be static or
dynamic. The former make their scheduling decisions
before the system starts running. The latter make their
scheduling decisions at run time. Static scheduling only
works when there is perfect information available in
advance about the work to be done and the
deadlines that have to be met. Dynamic scheduling
algorithms do not have these restrictions.

57

6.4 Scheduling in Real-Time Systems

Sometimes one process has many children running
under its control. For example, a database system
process may have many children working on a request
or performing a specific function. The main process
has a task to find which child is the most important
and which the least. Unfortunately, none of the
schedulers discussed above accept any input from user
processes about scheduling decisions. As a result, the
scheduler rarely makes the best choice.

58

6.5 Policy versus Mechanism

The scheduling algorithm is parameterized in some
way, but the parameters can be filled in by user
processes. For example, suppose that the kernel uses a
priority-scheduling algorithm but provides a system
call by which a process can set and change the
priorities of its children. In this way the parent can
control in detail how its children are scheduled, even
though it itself does not do the scheduling. Here the
mechanism is in the kernel but policy is set by a user
process.

59

6.5 Policy versus Mechanism

In multi-thread systems, we have two levels of
parallelism present: processes and threads.
Scheduling in such systems differs substantially
depending on whether user-level threads or kernel-
level threads are supported.

60

6.6 Thread Scheduling

11

Let us consider user-level threads first. Since the kernel
is not aware of the existence of threads, it operates
as it always does, picking a process, say, A, and
giving A control for its quantum. The thread scheduler
inside A decides which thread to run, say A1. Since
there are no clock interrupts to multi-program threads,
this thread may continue running as long as it wants to.
If it uses up the process entire quantum, the kernel will
select another process to run.

61

6.6 Thread Scheduling

Now consider the case that A's threads have relatively
little work to do per CPU burst, for example, 5msec of
work within a 50msec quantum. Consequently each
one runs for a little while, then yields the CPU back to
the thread scheduler. This might lead to the sequence

A1, A2, A3, A1, A2, A3, A1, A2, A3, A1

before the kernel switches to process B.

62

6.6 Thread Scheduling

63

6.6 Thread Scheduling

Possible scheduling of user-level threads

(50-msec process quantum, threads run 5 msec/CPU burst)

The scheduling algorithm used by the run-time system
can be any of the ones described above. In practice,
round-robin scheduling and priority scheduling are
most common. The only constraint is the absence of a
clock to interrupt a thread that has run too long.

64

6.6 Thread Scheduling

Now consider the situation with kernel-level threads.
Here the kernel picks a particular thread to run. It
does not have to take into account which process the
thread belongs to, but it can if it wants to. The thread
is given a quantum and is forcibly suspended if it
exceeds the quantum.

65

6.6 Thread Scheduling
66

6.6 Thread Scheduling

Possible scheduling of kernel-level threads

(50-msec process quantum, threads run 5 msec/CPU burst)

12

A major difference between user-level threads and
kernel-level threads is the performance. Doing a
thread switch with user-level threads is very simple in
contrast to kernel-level.

On the other hand, with kernel-level threads, having a
thread block on I/O does not suspend the entire
process as it does with user-level threads.

67

6.6 Thread Scheduling

Since the kernel knows that switching from a thread in
process A to a thread in process B is more expensive
than running a second thread in process A (due to
having to change the memory map and having the
memory cache spoiled), it can take this information
into account when making a decision.

68

6.6 Thread Scheduling

User-level threads can employ an application-specific
thread scheduler.

Consider a Web server that a worker thread has just
blocked and the dispatcher thread and two worker
threads are ready. The run-time system can easily
pick the dispatcher to run next, so that it can start
another worker running. This strategy maximizes the
amount of parallelism in an environment where
workers frequently block on disk I/O.

69

6.6 Thread Scheduling

