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OPERATING SYSTEMS

DEADLOCKS

In a multiprogramming system, when a process 
requests resources if those resources are being used 
by other processes then the process enters a waiting 
state. However, if other processes are also in a 
waiting state, we have deadlock. As a formal 
definition, a set of processes is in a deadlock state if 
every process in the set is waiting for an event that 
can only be caused by some processes in the same set.
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7 Deadlocks

Suppose both two processes want to scan a document 
and record it on a CD. Process A first requests 
permission to use the scanner and process B requests 
the CD recorder first. They are granted. Now A asks 
for the CD recorder, but the request is denied until B 
releases it. Unfortunately, instead of releasing the CD 
recorder B asks for the scanner. At this point both 
processes are blocked and will remain forever. This 
situation is called a deadlock.
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7 Deadlocks

As well as on hardware resources, deadlocks can 
occur on software resources. For example, in a 
database system, a program may have to lock 
several records it is using, to avoid race conditions. If 
process A locks record R1 and process B locks record 
R2, and then each process tries to lock the other one's 
record, we also have a deadlock.
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7 Deadlocks

A resource can be a hardware device or a piece of 
information. For some resources, several identical 
instances may be available, such as three disk drives. 
When interchangeable copies of a resource are 
available, any one of them can be used to satisfy any 
request for the resource. In short, a resource is 
anything that can be used by only a single process at 
any instant of time.
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7.1 Resources

Resources come in two types: preemptable and non-
preemptable. 

� A preemptable resource, like memory, is one that can 
be taken away from the process owning it with no ill 
effects.

� A non-preemptable resource, like CD recorders, is one 
that cannot be taken away from its current owner without 
causing the computation to fail.
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7.1 Resources
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Consider a system with 64 MB of user memory, one 
CD recorder, and two 64-MB processes that each 
want to record on CD. Process A starts to compute the 
values to burn. Before it has finished with the 
computation, it exceeds its time quantum and is 
swapped. But if process A has begun to burn, 
suddenly giving the CD recorder to process B will 
result in a corrupted CD.
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7.1 Resources

In general, deadlocks involve non-preemptable 
resources. Potential deadlocks that involve 
preemptable resources can usually be solved by 
reallocating resources from one process to another. 
Thus our treatment will focus on non-preemptable 
resources.

8

7.1 Resources

The sequence of events required to use a resource is 
as requesting, using, and releasing the resource. If the 
resource is not available when it is requested, the 
requesting process is forced to wait. In some operating 
systems, the process is automatically blocked when a 
resource request fails, and awakened when it 
becomes available. In other systems, the request fails 
with an error code, and it is up to the calling process 
to wait a little while and try again.
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7.1 Resources

Because all the processes are waiting, none of them 
will ever cause any of the events that could wake up 
any of the other members of the set, and all the 
processes continue to wait forever. For this model, we 
assume that processes have only a single thread and 
that there are no interrupts possible to wake up a 
blocked process. The no-interrupts condition is needed 
to prevent an otherwise deadlocked process from 
being awakened by, say, an alarm, and then causing 
events that release other processes in the set. 
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7.2 Principles of Deadlock

In most cases, each member of the set of deadlocked 
processes is waiting for a resource that is owned by 
another deadlocked process. None of the processes 
can run, none of them can release any resources, and 
none of them can be awakened. The number of 
processes and the number and kind of resources 
possessed and requested are unimportant.
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7.2 Principles of Deadlock

Following four conditions must be present for a 
deadlock to occur:

1. Mutual exclusion condition

2. Hold and wait condition

3. No preemption condition

4. Circular wait condition
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7.3 Conditions for Deadlock
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Mutual exclusion: Each resource is either currently 
assigned to exactly one process or is available.

Hold and wait: Processes currently holding resources 
that were granted earlier can request new resources.

No preemption: Resources previously granted cannot 
be forcibly taken away from a process. They must be 
clearly released by the process holding them.

Circular wait: There must be a circular chain of two or 
more processes, each of which is waiting for a 
resource held by the next member of the chain.
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7.3 Conditions for Deadlock

If one of these conditions is absent, no deadlock is 
possible. In fact, each condition relates to a policy 
that a system can have or not have:

� Can a given resource be assigned to more than 
one process at once? 

� Can a process hold a resource and ask for 
another? 

� Can resources be preempted?

� Can circular waits exist? 
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7.3 Conditions for Deadlock

To modeling of these four conditions directed graphs 
can be used. The graphs have two kinds of nodes:

� Processes (circles)

� Resources (squares)

An arc from a resource node to a process node means 
that the resource has previously been requested by, 
granted to, and is currently held by that process. An 
arc from a process to a resource means that the 
process is currently blocked waiting for that resource. 
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7.4 Deadlock Modeling
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7.4 Deadlock Modeling

(a) Holding a resource  (b) Requesting a resource.    (c) Deadlock.

In (a) resource R is currently assigned to process A. In 
(b) , process B is waiting for resource S. In (c) we see a 
deadlock: process C is waiting for resource T, which is 
currently held by process D. Process D is not about to 
release resource T because it is waiting for resource U, 
held by C. Both processes will wait forever. A cycle in 
the graph means that there is a deadlock involving 
the processes and resources in the cycle.
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7.4 Deadlock Modeling

Now let us see how resource graphs can be used. 
Imagine that we have three processes, A, B, and C, 
and three resources, R, S, and T. The requests and 
releases of the three processes are given in (a-c). The 
operating system is free to run any unblocked process 
at any instant, so it could decide to run A until A 
finished all its work, then run B to completion, and 
finally run C.
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7.4 Deadlock Modeling
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This ordering does not lead to any deadlocks because 
there is no competition for resources but it also has no 
parallelism at all. In addition to requesting and 
releasing resources, processes compute and do I/O. 
When the processes are run sequentially, there is no 
possibility that while one process is waiting for I/O, 
another can use the CPU. Thus running the processes 
strictly sequentially may not be optimal. On the other 
hand, if none of the processes do any I/O at all, 
shortest job first is better than round robin.
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7.4 Deadlock Modeling
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7.4 Deadlock Modeling

An example
A                         B                        C

Let us now suppose that the processes do both I/O 
and computing, so that round robin is a reasonable 
scheduling algorithm. The resource requests might 
occur in the order of (d). If these six requests are 
carried out in that order, the six resulting resource 
graphs are shown in (e)-(j). After request 4 has been 
made, A blocks waiting for S, as shown in (h). In the 
next two steps B and C also block, ultimately leading 
to a cycle and the deadlock of (j). From this point on, 
the system is frozen.
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7.4 Deadlock Modeling

The operating system is not required to run the 
processes in any special order. In particular, if 
granting a particular request might lead to deadlock, 
the operating system can simply suspend the process 
without granting the request until it is safe. If the 
operating system knew about the impending 
deadlock, it could suspend B instead of granting it S. 
By running only A and C, we would get the requests 
and releases of (k) instead of (d). This sequence leads 
to the resource graphs of (l-q), which do not lead to 
deadlock.
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7.4 Deadlock Modeling
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7.4 Deadlock Modeling

An example

(o)             (p)                       (q)

After step (q), process B can be granted S because A 
is finished and C has everything it needs. Even if B 
should eventually block when requesting T, no 
deadlock can occur. B will just wait until C is finished.

We just carry out the requests and releases step by 
step, and after every step check the graph to see if it 
contains any cycles. If so, we have a deadlock; if not, 
there is no deadlock.   
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7.4 Deadlock Modeling
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Four strategies are used for dealing with deadlocks:

� Just ignore the problem altogether. Maybe if you 
ignore it, it will ignore you.

� Detection and recovery. Let deadlocks occur, 
detect them, and take action.

� Dynamic avoidance by careful resource 
allocation.

� Prevention, by structurally negating one of the 
four conditions necessary to cause a deadlock.
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7.4 Deadlock Modeling

The simplest approach is the ostrich method: stick your 
head in the sand and pretend there is no problem at 
all. 
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7.5 Ignoring: The Ostrich Method

About this method, we must ask some questions:

� how often the problem is expected

� how often the system crashes for other reasons

� how serious a deadlock is

If deadlocks occur on the average once every five 
years, but system crashes due to hardware failures, 
compiler errors, and operating system bugs occur once 
a week, most engineers would not be willing to pay a 
large penalty in performance. 
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7.5 Ignoring: The Ostrich Method

Windows and Unix systems use this method. These OSs 
potentially suffer from deadlocks that are not even 
detected, let alone automatically broken. The total 
number of processes in a system is determined by the 
number of entries in the process table. Thus process 
table slots are finite resources. If a ‘fork’ fails because 
the table is full, a reasonable approach for the 
program doing the fork is to wait a random time and 
try again.
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7.5 Ignoring: The Ostrich Method

A second technique is detection and recovery. When 
this technique is used, the system does not do anything 
except monitor the requests and releases of resources. 
Every time a resource is requested or released, the 
resource graph is updated, and a check is made to 
see if any cycles exist. If a cycle exists, one of the 
processes in the cycle is killed. If this does not break 
the deadlock, another process is killed, and so on until 
the cycle is broken.

29

7.6 Detection and Recovery

Consider a system with seven processes, A though G, 
and six resources, R through W. The state of which 
resources are currently owned and which ones are 
currently being requested is as follows:

1. Process A holds R and wants S

2. Process B holds nothing but wants T

3. Process C holds nothing but wants S

4. Process D holds U and wants Sand T

5. Process E holds T and wants V

6. Process F holds Wand wants S

7. Process G holds V and wants U
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7.6 Detection and Recovery
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7.6 Detection and Recovery

Although it is relatively simple to pick out the 
deadlocked processes by eye from a simple graph, 
for use in actual systems we need a formal algorithm 
for detecting deadlocks. We will give a simple 
algorithm that inspects a graph and terminates either 
when it has found a cycle or when it has shown that 
none exists. It uses one dynamic data structure, L, a list 
of nodes, as well as the list of arcs. During the 
algorithm, arcs will be marked to indicate that they 
have already been inspected, to prevent repeated 
inspections.
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7.6 Detection and Recovery

1. For each node, N in the graph, perform the following five 

steps with N as the starting node.

2. Initialize L to the empty list, designate all arcs as unmarked.

3. Add current node to end of L, if the node now appears in L 

two times. If it does, there is a cycle, algorithm terminates.

4. From given node, see if any unmarked outgoing arcs. If so, 
go to step 5; if not, go to step 6.

5. Pick an unmarked outgoing arc at random and mark it. Then 

follow it to the new current node and go to step 3.

6. If this is initial node, there is no cycle, algorithm terminates. 

Otherwise, dead end. Remove it, go back to previous node, 
make that one current node, go to step 3.
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7.6 Detection and Recovery

Suppose that our deadlock detection algorithm has 
succeeded and detected a deadlock. What next? 
Some way is needed to recover and get the system 
going again.

� Recovery through Preemption

� Recovery through Rollback

� Recovery through Killing Processes
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7.6 Detection and Recovery

Recovery through preemption

� Take a resource from some other process

� Depends on nature of the resource

Recovery through rollback

� Checkpoint a process periodically

� Use this saved state 

� Restart the process if it is found deadlocked

Recovery through killing processes

� Kill one of the processes in the deadlock cycle

� The other processes get its resources 

� Choose process that can be rerun from the beginning
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7.6 Detection and Recovery

To prevent the system from deadlocks, one of the four 
discussed conditions that may create a deadlock 
should be discarded.
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7.7 Deadlock Prevention

Condition Approach

Mutual exclusion Spool everything

Hold and wait Request all resource initially

No preemption Take resources away

Circular wait Order resources numerically
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Mutual Exclusion

� Some resources are not sharable, but can be made 
sharable (printer, tape, etc.)

� Some resources can be made virtual
� Spooling - Printer

� Does spooling apply to all non-sharable resources? 

� Mixing - Soundcard
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7.7 Deadlock Prevention

Hold and Wait

� Require processes to request resources before starting
� A process never has to wait for what it needs

� Telephone companies do this

� Solution
� Process must give up all resources

� Then request all immediately needed
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7.7 Deadlock Prevention

No Preemption

� This is not a reasonable option

� Consider a process given the printer

� Halfway through its job

� No  forcibly take away printer
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7.7 Deadlock Prevention

Circular Wait

� Impose an order of requests for all resources

� Method

� Assign a unique ID to each resource

� All resource requests must be in an ascending order of 
the IDs

� Release resources in a descending order

� Prove this method has no circular wait!

� Is this generally feasible?
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7.7 Deadlock Prevention

A way to avoid deadlocks is the banker's algorithm 
proposed by Dijkstra (1965). Consider a banker and 
some credit customers. The banker does not have 
enough cash to lend every customer at the same time, 
but he knows that not all customers will need their 
maximum credit immediately. He also trusts every 
customer to be able to repay his loan, so he knows 
eventually he can service all the requests. Here, 
customers are processes, units are disk drives, and the 
banker is the operating system.
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7.8 Avoidance: The Banker's algorithm

Dijkstra’s (1965) the banker's algorithm

� Each customer tells banker the maximum number of 
resources it needs 

� Customer borrows resources from banker 

� Customer returns resources to banker 

� Customer eventually pays back loan 

� Banker only lends resources if the system will be in 

a safe state after the loan

Safe state - there is a lending sequence such that all 
customers can take out a loan 

Unsafe state - there is a possibility of deadlock

42

7.8 Avoidance: The Banker's algorithm
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7.8 Avoidance: The Banker's algorithm

(a) Safe                            (b) Safe                           (c) Unsafe

Each part of the figure shows a state of the system 
with respect to resource allocation, that is, a list of 
customers showing the money already loaned (disk 
drives already assigned) and the maximum credit 
available (maximum number of disk drives needed at 
once later). A state is safe if there exists a sequence 
of other states that leads to all customers getting 
loans up to their credit limits (all processes getting all 
their resources and terminating).
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7.8 Avoidance: The Banker's algorithm

The customers go about their respective businesses, 
making loan requests from time to time (i.e., asking for 
resources). At a certain moment, the situation is as 
shown in (b). This state is safe because with two units 
left, the banker can delay any requests except C's, 
thus letting C finish and release all four of his 
resources. With four units in hand, the banker can let 
either D or B have the necessary units, and so on.
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7.8 Avoidance: The Banker's algorithm

Consider what would happen if a request from B for 
one more unit were granted in (b). We would have 
situation (c), which is unsafe. If all the customers 
suddenly asked for their maximum loans, the banker 
could not satisfy any of them, and we would have a 
deadlock. An unsafe state does not have to lead to 
deadlock, since a customer might not need the entire 
credit line available, but the banker cannot count on 
this behavior.
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7.8 Avoidance: The Banker's algorithm

The banker's algorithm considers each request as it 
occurs, and sees if granting it leads to a safe state. If 
it does, the request is granted; otherwise, it is 
postponed until later. To see if a state is safe, the 
banker checks to see if he has enough resources to 
satisfy some customer. If so, those loans are assumed 
to be repaid, and the customer now closest to the limit 
is checked, and so on. If all loans can eventually be 
repaid, the state is safe and the initial request can be 
granted.
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7.8 Avoidance: The Banker's algorithm
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7.8 Avoidance: The Banker's algorithm

(a)                        (b)                        (c)                      (d)                      (e)

Consider we have three processes and 10 free disk 
space. Processes (A, B, and C) need 9, 4, and 7 disk 
space, respectively. First, how can we serve to 
processes?


